1-Центр точка О. Треугольник АВО - равносторонний.Все углы по 60. Треугольник АОД - равносторонний. Все углы по 60. Значит, угол А равен 120. Треугольник СОД - равнобедренный. Угол АОД для него внешний и равен сумме 2-х, не смежных с ним. Значит, углы ОСД и ОДС равны по 30. . То же и в треугольнике СОВ. Значит, угол С = 60. Угол Д = 90, угол В = 90.
Дуга АВ равна 60. Дуга ВС = 120. Дуга СД = 120. Дуга АД = 60. Как дуги, на которые опираются центральные углы.
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
1-Центр точка О. Треугольник АВО - равносторонний.Все углы по 60. Треугольник АОД - равносторонний. Все углы по 60. Значит, угол А равен 120. Треугольник СОД - равнобедренный. Угол АОД для него внешний и равен сумме 2-х, не смежных с ним. Значит, углы ОСД и ОДС равны по 30. . То же и в треугольнике СОВ. Значит, угол С = 60. Угол Д = 90, угол В = 90.
Дуга АВ равна 60. Дуга ВС = 120. Дуга СД = 120. Дуга АД = 60. Как дуги, на которые опираются центральные углы.
2-r=S\p
R=abc\4s
1)S=1\2*18*12=108
2)r=108\24=4.5
3)R=18*15*15\4*108=9.375
Объяснение: