Любое уравнение первой степени, имеющее вид Ax+By+C=0, где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид Ax+By+C=0 при некотором наборе значений А, В, С.
Объяснение:
Доказательство
указанная теорема состоит из двух пунктов, докажем каждый из них.
Докажем, что уравнение Ax+By+C=0 определяет на плоскости прямую.
Пусть существует некоторая точка М0(x0, y0), координаты которой отвечают уравнению Ax+By+C=0. Таким образом: Ax0+By0+C=0. Вычтем из левой и правой частей уравнений Ax+By+C=0 левую и правую части уравнения Ax0+By0+C=0, получим новое уравнение, имеющее вид A(x-x0)+B(y-y0)=0. Оно эквивалентно Ax+By+C=0.
Полученное уравнение A(x-x0)+B(y-y0)=0 является необходимым и достаточным условием перпендикулярности векторов
→
n
=(A, B) и
→
M0M
=(x-x0, y-y0). Таким образом, множество точек M(x, y) задает в
Общее уравнение прямой: описание, примеры, решение задач
Содержание:
Общее уравнение прямой: основные сведения
Неполное уравнение общей прямой
Общее уравнение прямой, проходящей через заданную точку плоскости
Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Составление общего уравнения прямой
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Общее уравнение прямой: основные сведения
Пусть на плоскости задана прямоугольная система координат Oxy.
Теорема 1
Любое уравнение первой степени, имеющее вид Ax+By+C=0, где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид Ax+By+C=0 при некотором наборе значений А, В, С.
Доказательство
указанная теорема состоит из двух пунктов, докажем каждый из них.
Докажем, что уравнение Ax+By+C=0 определяет на плоскости прямую.
Пусть существует некоторая точка М0(x0, y0), координаты которой отвечают уравнению Ax+By+C=0. Таким образом: Ax0+By0+C=0. Вычтем из левой и правой частей уравнений Ax+By+C=0 левую и правую части уравнения Ax0+By0+C=0, получим новое уравнение, имеющее вид A(x-x0)+B(y-y0)=0. Оно эквивалентно Ax+By+C=0.
Полученное уравнение A(x-x0)+B(y-y0)=0 является необходимым и достаточным условием перпендикулярности векторов
→
n
=(A, B) и
→
M0M
=(x-x0, y-y0). Таким образом, множество точек M(x, y) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора
→
n
=(A, B). Можем предположить, что это не так, но тогда бы векторы
→
n
=(A, B) и
→
M0M
=(x-x0, y-y0) не являлись бы перпендикулярными, и равенство A(x-x0)+B(y-y0)=0 не было бы верным.
Общее уравнение прямой: основные сведения
Следовательно, уравнение A(x-x0)+B(y-y0)=0 определяет прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение
A
x
+
B
y
+
C
=
0
определяет ту же прямую. Так мы доказали первую часть теоремы.
Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени
A
x
+
B
y
+
C
=
0
.
Зададим в прямоугольной системе координат на плоскости прямую
a
; точку
M
0
(
x
0
,
y
0
)
, через которую проходит эта прямая, а также нормальный вектор этой прямой
Объяснение:
ответ
4,9/5
15
liftec74
ученый
249 ответов
60.5 тыс. пользователей, получивших
ответ: 1) Рabcd=22 см 2) Pabcd=32 см
Объяснение:
Дан параллелограмм ABCD. Угла А и С острые. В и D тупые. Тогда:
1) ВК - биссектриса угла В. АК=4 см и КD= см =>AD=BC=4+3=7 см
Так как ВК-биссектриса, то угол АВК=углу СВК.
Угол СВК=АКВ , так как углы СВК и АКВ накрест лежащие и AD II BC
Тогда угол АКВ=АВК => треугольник АВК равнобедренный=> АВ=АК=4 см
АВ=CD=4 cm
=> Pabcd=AB*2+AD*2=4*2+7*2=8+14=22 см
2) АМ - биссектриса угла А ВМ=5 см МС=6 см => BC=AD=5+6=11 см
Далее все аналогично пункта 1.
MAD=BAM, так MAD ы BAM накрест лежащие и BC II AD
=> BAM=BMA
=> АВС - равнобедренный треугольник => AB=BM=5 cm
=>P abcd= 5*2+ 11*2=10+22=32 см
Любое уравнение первой степени, имеющее вид Ax+By+C=0, где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид Ax+By+C=0 при некотором наборе значений А, В, С.
Объяснение:
Доказательство
указанная теорема состоит из двух пунктов, докажем каждый из них.
Докажем, что уравнение Ax+By+C=0 определяет на плоскости прямую.
Пусть существует некоторая точка М0(x0, y0), координаты которой отвечают уравнению Ax+By+C=0. Таким образом: Ax0+By0+C=0. Вычтем из левой и правой частей уравнений Ax+By+C=0 левую и правую части уравнения Ax0+By0+C=0, получим новое уравнение, имеющее вид A(x-x0)+B(y-y0)=0. Оно эквивалентно Ax+By+C=0.
Полученное уравнение A(x-x0)+B(y-y0)=0 является необходимым и достаточным условием перпендикулярности векторов
→
n
=(A, B) и
→
M0M
=(x-x0, y-y0). Таким образом, множество точек M(x, y) задает в
Справочник
Прямая, плоскость
Статью подготовили специалисты образовательного сервиса Zaochnik.
Как работает сервис
Наши социальные сети
Общее уравнение прямой: описание, примеры, решение задач
Содержание:
Общее уравнение прямой: основные сведения
Неполное уравнение общей прямой
Общее уравнение прямой, проходящей через заданную точку плоскости
Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Составление общего уравнения прямой
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Общее уравнение прямой: основные сведения
Пусть на плоскости задана прямоугольная система координат Oxy.
Теорема 1
Любое уравнение первой степени, имеющее вид Ax+By+C=0, где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид Ax+By+C=0 при некотором наборе значений А, В, С.
Доказательство
указанная теорема состоит из двух пунктов, докажем каждый из них.
Докажем, что уравнение Ax+By+C=0 определяет на плоскости прямую.
Пусть существует некоторая точка М0(x0, y0), координаты которой отвечают уравнению Ax+By+C=0. Таким образом: Ax0+By0+C=0. Вычтем из левой и правой частей уравнений Ax+By+C=0 левую и правую части уравнения Ax0+By0+C=0, получим новое уравнение, имеющее вид A(x-x0)+B(y-y0)=0. Оно эквивалентно Ax+By+C=0.
Полученное уравнение A(x-x0)+B(y-y0)=0 является необходимым и достаточным условием перпендикулярности векторов
→
n
=(A, B) и
→
M0M
=(x-x0, y-y0). Таким образом, множество точек M(x, y) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора
→
n
=(A, B). Можем предположить, что это не так, но тогда бы векторы
→
n
=(A, B) и
→
M0M
=(x-x0, y-y0) не являлись бы перпендикулярными, и равенство A(x-x0)+B(y-y0)=0 не было бы верным.
Общее уравнение прямой: основные сведения
Следовательно, уравнение A(x-x0)+B(y-y0)=0 определяет прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение
A
x
+
B
y
+
C
=
0
определяет ту же прямую. Так мы доказали первую часть теоремы.
Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени
A
x
+
B
y
+
C
=
0
.
Зададим в прямоугольной системе координат на плоскости прямую
a
; точку
M
0
(
x
0
,
y
0
)
, через которую проходит эта прямая, а также нормальный вектор этой прямой
→
n
=
(
A
,
B
)
.