Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды. Пирамида называется n-угольной, если ее основанием является n-угольник.
Пирамида называется правильной, если её основание — правильный многоугольник и все боковые ребра равны.
Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Усечённая пирамида называется правильной, если пирамида, из которой она была получена — правильная.
Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие в
Обозначим вершины треугольника А В С, высоту ВН. ВН делит ∆АВС на 2 равных прямоугольных треугольника, в которых высота и половины являются катетами, а боковые стороны - гипотенузы, и ещё ВН является ещё биссектрисой и медианой, так как ∆АВС равнобедренный, поэтому <АВН=<СВН, АН=НС=4√3÷2=2√3см. Рассмотрим∆АВН и найдём <А, используя косинус угла. Косинус - это отношение прилежащего к углу катета к гипотенузе, поэтому
Так как <А=30°, то ВН=1/2 АВ, поскольку катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому ВН=АВ÷2=4÷2=2см
Пирамида
Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды. Пирамида называется n-угольной, если ее основанием является n-угольник.
Пирамида называется правильной, если её основание — правильный многоугольник и все боковые ребра равны.
Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Усечённая пирамида называется правильной, если пирамида, из которой она была получена — правильная.
Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие в
Объяснение:
ВН=2см
Объяснение:
Обозначим вершины треугольника А В С, высоту ВН. ВН делит ∆АВС на 2 равных прямоугольных треугольника, в которых высота и половины являются катетами, а боковые стороны - гипотенузы, и ещё ВН является ещё биссектрисой и медианой, так как ∆АВС равнобедренный, поэтому <АВН=<СВН, АН=НС=4√3÷2=2√3см. Рассмотрим∆АВН и найдём <А, используя косинус угла. Косинус - это отношение прилежащего к углу катета к гипотенузе, поэтому
Так как <А=30°, то ВН=1/2 АВ, поскольку катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому ВН=АВ÷2=4÷2=2см