По-горизонтали: 2. певучий и виртуозный деревянный духовой инструмент симфонического оркестра с диапазоном от ре малой октавы до ля (си бемоль) третьей октавы.3. инструмент, изготовлением которого прославились мастера амати, гварнери, страдивари.7. самый низкий деревянный духовой инструмент симфонического оркестра.8. ударный инструмент.10. деревянный духовой инструмент, хорошо мечтательное, задумчивое настроение.13. музыкальный инструмент, охватывающий практически полный диапазон симфонического оркестра.14. самый высокий медный духовой инструмент симфонического оркестра.15. один из струнных смычковых музыкальных инструментов.по-вертикали: 1. самый высокий деревянный духовой инструмент симфонического оркестра.4. самый низкий струнный смычковый инструмент симфонического оркестра.5. струнный инструмент, густым и певучим тембром. этому инструменту часто предназначены выразительные соло в оркестре.6. медный духовой инструмент, предком которого был охотничий горн. часто исполняет в оркестре аккомпанирующую партию.8. медный духовой инструмент с выдвижной кулисой.9. ударный инструмент с настраиваемой высотой звучания, в форме нескольких котлов, обтянутых сверху кожей.11. самый крупный медный духовой инструмент.12. один из самых древних струнных инструментов. вошел в состав симфонического оркестра в 19 веке.ответыпо-горизонтали: 2.кларнет. 3.скрипка. 7.фагот. 8.тарелки. 10.гобой. 13.фортепиано. 14.труба. 15.альт.по-вертикали: 1.флейта. 4.контрабас. 5.виолончель. 6.валторна. 8.тромбон. 9.литавры. 11.туба. 12.арфа.
Построение ясно из рисунка. Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н. Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат. Диагональ квадрата равна в нашем случае 6√2. Ее половина ОС=3√2. Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14. Необходимо найти перпендикуляр SH к плоскости BCMN. Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые. Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF. Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC). Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO). Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG. FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14. EF находим из треугольника EOF по Пифагору: EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23. ответ: SH=6√14/√23.
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.