В четырехугольнике ABCD углы ABC и ADC прямые, а стороны АВ и ВС равны. Известно, что BH перпендикулярно AD и BH=1. Найдите площадь четырехугольника АВСD. Завтра сдавать, уже всю голову сломал
Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ. проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК. Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)
Так как угол при вершине равен 60 и пирамида правильная, ребром является правильный треугольник. Высота которого равна 12.
Высота в правильном треугольнике является медианой,высотой и биссектрисой. Следовательно можно разделить треугольник на две равные части (два прямоугольных треугольника) Тогда один угол выйдет 30*, второй 60* и третий 90*
Так как катет лежащий против угла 30* равен половине гипотенузы, пусть гипотенуза 2x, а катет против угла 30* = x.
Тогда по теореме Пифагора получим:
Так как пирамида правильна, ее основание - квадрат.
Теперь осталось найти высоту. Из прямоугольного треугольника гипотенузой которого служит апофема, а один из катетов высота, и зная что угол между проекцией апофемы на основание и самой апофемой равен 60, значит трейтий угол 30, катет лежащий против угла 30* равен половине гипотенузы, т.е. половина 12, = 6 По теореме Пифагора:
проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.
Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)
Так как угол при вершине равен 60 и пирамида правильная, ребром является правильный треугольник. Высота которого равна 12.
Высота в правильном треугольнике является медианой,высотой и биссектрисой. Следовательно можно разделить треугольник на две равные части (два прямоугольных треугольника) Тогда один угол выйдет 30*, второй 60* и третий 90*
Так как катет лежащий против угла 30* равен половине гипотенузы, пусть гипотенуза 2x, а катет против угла 30* = x.
Тогда по теореме Пифагора получим:
Так как пирамида правильна, ее основание - квадрат.
Теперь осталось найти высоту.
Из прямоугольного треугольника гипотенузой которого служит апофема, а один из катетов высота, и зная что угол между проекцией апофемы на основание и самой апофемой равен 60, значит трейтий угол 30, катет лежащий против угла 30* равен половине гипотенузы, т.е. половина 12, = 6
По теореме Пифагора: