1)Точки F и E-середины сторон BC и BA треугольника ABC.
Отрезок, соединяющий середины двух сторон треугольника, является его средней линией, равен половине третьей стороны и параллелен ей.
АЕ=ВЕ=10 => АВ=10•2=20 см
CF=BF=> ВС=16•2=32 см
АС=EF•2=14•2=28 см.
Периметр треугольника - сумма длин его сторон.
Р(АВС)=20+28+32=80 см
Вариант решения.
Так как отрезок ЕF – средняя линия ∆ АВС и параллелен АС, углы при основаниях ∆ АВС и ∆ ВЕF равны как соответственные углы при пересечении параллельных прямых секущими АВ и СВ, и угол В - общий.
Поэтому ∆ АВС~∆ ВЕF по равным углам.
АВ=2•ВЕ=>
Коэффициент подобия этих треугольников равен АВ:ВЕ. k=2
Р(BEF)=BE+BF+EF=40 см
Отношение периметров подобных фигур равно коэффициенту подобия их линейных размеров. ⇒
Р(АВС)=2Р(BEF)=2•40=80 см
2) Примем меньшее основание трапеции равным а. Тогда большее – 2а
Средняя линия трапеции равна половине суммы оснований.
если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.
Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.
DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.
Большее 4•2=8 см
Меньшее основание трапеции равно 4 см.
Объяснение:
1)Точки F и E-середины сторон BC и BA треугольника ABC.
Отрезок, соединяющий середины двух сторон треугольника, является его средней линией, равен половине третьей стороны и параллелен ей.
АЕ=ВЕ=10 => АВ=10•2=20 см
CF=BF=> ВС=16•2=32 см
АС=EF•2=14•2=28 см.
Периметр треугольника - сумма длин его сторон.
Р(АВС)=20+28+32=80 см
Вариант решения.
Так как отрезок ЕF – средняя линия ∆ АВС и параллелен АС, углы при основаниях ∆ АВС и ∆ ВЕF равны как соответственные углы при пересечении параллельных прямых секущими АВ и СВ, и угол В - общий.
Поэтому ∆ АВС~∆ ВЕF по равным углам.
АВ=2•ВЕ=>
Коэффициент подобия этих треугольников равен АВ:ВЕ. k=2
Р(BEF)=BE+BF+EF=40 см
Отношение периметров подобных фигур равно коэффициенту подобия их линейных размеров. ⇒
Р(АВС)=2Р(BEF)=2•40=80 см
2) Примем меньшее основание трапеции равным а. Тогда большее – 2а
Средняя линия трапеции равна половине суммы оснований.
6=( а+2а):2
а+2а=12
3а=12 ⇒ а=12:3=4
Меньшее основание трапеции равно 4 см.
Большее 4•2=8 см
1. Прямые АВ₁ и DC скрещивающиеся
2. DC ║ (AA₁B₁)
3. АВ₁ ║ (DСС₁)
Объяснение:
1.
Признак скрещивающихся прямых:
если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.