Утрапеции abcd видомо що ab = cd = 8 сантиметров кут сbd= 58 градусов кут abd=46 градусов знвйдіть : а)основы и диагональ трапеции в) радиус кола описаного навколо трикутника abc
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
ответ: Из точки К на основания двух противоположных боковых граней опустим апофемы КН и КН1. Угол НКН1 = 90 градусов (так как грани перпендикулярны и КН ⊥ AD, КН1 ⊥ BC). Из условия задачи следует, что НН1 = 6√2. Рассмотрим ΔНКН1 - прямоугольный. В нем КН=КН1=НН1/√2=6√2/√2=6. Теперь рассмотрим ΔОКН - тоже прямоугольный, тк КО - высота пирамиды. ОН=1/2 * НН1= 6√2/2=3√2.
По теореме Пифагора: КО² = КН² - ОН² = 6²-18 = 18 ⇒ КО = 3√2.
АС - диагональ квадрата ABCD, она равна DC*√2 = 6√2*√2 = 12.
Площадь ΔКАС(площадь диагонального сечения) = 1/2 * КО * АС =
ответ: Из точки К на основания двух противоположных боковых граней опустим апофемы КН и КН1. Угол НКН1 = 90 градусов (так как грани перпендикулярны и КН ⊥ AD, КН1 ⊥ BC). Из условия задачи следует, что НН1 = 6√2. Рассмотрим ΔНКН1 - прямоугольный. В нем КН=КН1=НН1/√2=6√2/√2=6. Теперь рассмотрим ΔОКН - тоже прямоугольный, тк КО - высота пирамиды. ОН=1/2 * НН1= 6√2/2=3√2.
По теореме Пифагора: КО² = КН² - ОН² = 6²-18 = 18 ⇒ КО = 3√2.
АС - диагональ квадрата ABCD, она равна DC*√2 = 6√2*√2 = 12.
Площадь ΔКАС(площадь диагонального сечения) = 1/2 * КО * АС =
= 1/2 * 3√2 * 12 = 18√2