АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
M - точка пересечения медиан
Медианы делятся точкой пересечения 2:1 от вершины.
AM:MD =CM:MK =2:1
AM=10; MD=5; CM =4; MK=2
Определим, какая из сторон ABC равна 6.
В треугольнике сумма двух сторон всегда больше третьей (неравенство треугольника).
△AMC: AC+CM>AM => AC>10-4 => AC>6
△AMK: AK+MK>AM => AK>10-2 => AK>8 => AB>8
Следовательно только сторона BC может быть равна 6.
BC=6, CD=3, △MDC - египетский (3:4:5) => BCK=90°
△BCK: BC=CK=6; BK=6√2 (т Пифагора) => AB=12√2
Продлим BC, AE||CK, E=90
△BEA~△BCK, k=AB/BK =2
CE=BC=6; AE=2CK=12
△ACE: AC =√(AE^2 +CE^2) =6√5