Упрямоугольного треугольника заданы катеты а и b. найдите ги.
потенузу с, если: а) а = 3, b = 4; б) а = 5, b = 12; в) а = 8, b = 15
2. у прямоугольного треугольника заданы гипотенуза си катет а. най
дите второй катет, если: а) с = 5, а = 3; б) с = 13, а = 5; в) с = 10
a = 8.
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4
1. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.
2. Два отрезка называются параллельными, если они лежит на параллельных прямых.
3. Секущей называется прямая, которая пересекает две другие прямые в двух разных точках.
4. При пересечении двух прямых секущей образуются следующие пары углов:
соответственные: ∠1 и ∠5, ∠2 и ∠6, ∠3 и ∠7, ∠4 и ∠8;внутренние накрест лежащие: ∠3 и ∠5, ∠4 и ∠6;внешние накрест лежащие: ∠1 и ∠7, ∠2 и ∠8;внутренние односторонние: ∠3 и ∠6, ∠4 и ∠5;внешние односторонние: ∠1 и ∠8, ∠2 и ∠7.5. Три признака параллельности прямых:
Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.6. Можно построить прямую, параллельную данной, используя чертежный прямоугольный треугольник:
проводят прямую а;с чертежного прямоугольного треугольника проводят прямую b, перпендикулярную прямой а;перемещая прямоугольный треугольник вдоль прямой а, строят прямую с, так же перпендикулярную прямой а;так как прямые b и с перпендикулярны одной прямой, то они параллельны.7. Аксиома - это утверждение, не требующее доказательства.
8. Через точку, не лежащую на данной прямой можно провести только одну прямую, параллельную данной.
9. Следствие - это утверждение, которое непосредственно следует из аксиомы или теоремы.
10. Следствия из аксиомы параллельных прямых:
На плоскости две прямые, параллельные третьей, параллельны между собой.Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.11. Теорема называется обратной данной, если в ней условие и заключение данной теоремы поменялись местами.
12. Это свойства параллельных прямых:
Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.Если две параллельные прямые пересечены секущей, то соответственные углы равны.Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.