Пускай мы имеем вектор а = ( 3 ; 4 ) . Найдем его длину. Мы знаем, что длину вектора можно найти за формулой: [ a ] = ( 3 ^2 + 4 ^2 ) ^ ( 1 / 2 ) = 5 , где [ а ] - длина вектора а. Тогда длина нового вектора, назовем его в, должна быть равна 10. К тому же, вектор в должен быть одинаково направленый с вектором а. Тогда его координаты должны иметь такие же знаки, как и у вектора а. Имеем: [ в ] = 2 [ a ] . Тогда найдем в: Получаем, что
NM║CB ⇒ ∠SNM = ∠SCB; ∠SMN = ∠SBC как соответственные углы ⇒ ΔSCB ~ ΔSNM по двум равным углам ⇒ ⇒ Т.к. фигура в сечении пирамиды плоскостью, параллельной основанию, подобна основанию, то ΔABC ~ ΔKMN с коэффициентом подобия k = Площади подобных фигур относятся как коэффициент подобия в квадрате
Пускай мы имеем вектор а = ( 3 ; 4 ) . Найдем его длину. Мы знаем, что длину вектора можно найти за формулой: [ a ] = ( 3 ^2 + 4 ^2 ) ^ ( 1 / 2 ) = 5 , где [ а ] - длина вектора а. Тогда длина нового вектора, назовем его в, должна быть равна 10. К тому же, вектор в должен быть одинаково направленый с вектором а. Тогда его координаты должны иметь такие же знаки, как и у вектора а. Имеем: [ в ] = 2 [ a ] . Тогда найдем в: Получаем, что
в = 2 * ( 3 ; 4 ) = ( 2 * 3 ; 2 * 4 ) = ( 6 ; 8 ) .
Сделаем проверку:[ в ] = ( 6 ^2 + 8 ^2 ) ^ ( 1 / 2 ) = 10, что и требовалось найти.
ответ: в = ( 6 ; 8 ) .
Объяснение:
Пирамида SABC; высота SO⊥(ABC); (KMN)║(ABC); SF:FO = 3:8
дм²
SO = SF + FO = SF +
ΔSFM прямоугольный ∠SFM = 90°
ΔSOB прямоугольный ∠SOB = 90°
ΔSFM ~ ΔSOB по общему острому ∠FSM ⇒
NM║CB ⇒ ∠SNM = ∠SCB; ∠SMN = ∠SBC как соответственные углы ⇒
ΔSCB ~ ΔSNM по двум равным углам ⇒
⇒
Т.к. фигура в сечении пирамиды плоскостью, параллельной основанию, подобна основанию, то ΔABC ~ ΔKMN с коэффициентом подобия
k =
Площади подобных фигур относятся как коэффициент подобия в квадрате
ответ: площадь основания 363 дм³