Умоляю дан острый уголья вершиной m. окружность пересекает одну из сторон угла в точках a и b и касается другой стороны ушла в точке c, ma=9, mb=11, cos(cmb)=(корень из11)/6 найти радиус окружности и площадь треугольника abc
Множество точек равноудаленных от концов отрезка (от двух данных точек) - серединный перпендикуляр к отрезку.
Данная прямая может
1) пересекать серединный перпендикуляр - единственное решение (точка)
2) совпадать с ним - бесконечно много решений
3) быть параллельной ему - нет решений
--------------------------------
Чтобы построить серединный перпендикуляр к отрезку AB, проведем окружности с центрами A и B радиусом AB. Точки пересечения окружностей равноудалены от A и B, следовательно лежат на серединном перпендикуляре к отрезку AB.
Биссектриса треугольника - это отрезок, который делит угол треугольника пополам.
Свойства биссектрисы треугольника, изучаемые в 8 классе :
Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.Квадрат длины биссектрисы угла треугольника равен произведению сторон, из которых выходит биссектриса, без произведения отрезков, на которая она делит третью сторону.Биссектрисы углов треугольника всегда пересекаются в одной точке - инцентре, который также является центром вписанной в треугольник окружности.Биссектрисы равных углов в подобных треугольниках относятся как коэффициент подобия.
Множество точек равноудаленных от концов отрезка (от двух данных точек) - серединный перпендикуляр к отрезку.
Данная прямая может
1) пересекать серединный перпендикуляр - единственное решение (точка)
2) совпадать с ним - бесконечно много решений
3) быть параллельной ему - нет решений
--------------------------------
Чтобы построить серединный перпендикуляр к отрезку AB, проведем окружности с центрами A и B радиусом AB. Точки пересечения окружностей равноудалены от A и B, следовательно лежат на серединном перпендикуляре к отрезку AB.
Свойства биссектрисы треугольника, изучаемые в 8 классе :
Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.Квадрат длины биссектрисы угла треугольника равен произведению сторон, из которых выходит биссектриса, без произведения отрезков, на которая она делит третью сторону.Биссектрисы углов треугольника всегда пересекаются в одной точке - инцентре, который также является центром вписанной в треугольник окружности.Биссектрисы равных углов в подобных треугольниках относятся как коэффициент подобия.