Найдем другой угол параллелограмма зная, что сумма смежных (соседних) углов параллелограмма равна 180°:
180° -60° = 120°
Рассмотрим треугольники образованные боковыми сторонами и диагоналями.
Треугольник со сторонами 12 и 20 см и углом между ними 60°: третья сторона d1 будет диагональю параллелограмма.
Используем теорему косинусов ("Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними"):
Найдем другой угол параллелограмма зная, что сумма смежных (соседних) углов параллелограмма равна 180°:
180° -60° = 120°
Рассмотрим треугольники образованные боковыми сторонами и диагоналями.
Треугольник со сторонами 12 и 20 см и углом между ними 60°: третья сторона d1 будет диагональю параллелограмма.
Используем теорему косинусов ("Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними"):
d1 = √(12²+20²-2*12*20*cos60°) = √(144+400-480*0.5) = √304=√(16*19)=4√19
Треугольник со сторонами 12 и 20 см и углом между ними 120°: третья сторона d2 будет диагональю параллелограмма.
d2 = √(12²+20²-2*12*20*cos120°) = √(144+400+480*0.5) = √784 = 28
Объяснение:
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.