CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB) Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом. По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно: CO=2/3 * CDOF=1/3 * AF По теореме Пифагора CF*CF=OF*OF+CO*CO Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см. Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см.
задача плоская - всё происходит в плоскости, перпендикулярной грани угла и содержащей т.А. Рисуем угол 45 градусов, где то внутри угла на расстоянии 10 - точку А, и из неё опускаем перпендикуляры на стороны угла. Пусть длина одного х, тогда другого х*3*√2. (Для любителей тупых решений скажу сразу, х является решением тригонометрического уравненияpi/4 = arccos(x/10) + arccos(x*3*√2/10);Однако все гораздо приятнее) Продолжим отрезок длинны х до пересячения со второй стороной угла. Получим прямоугольный равнобедренный треугольник, у которого катет равен х+х*3*√2*√2 = 7*х, и в нем отрезок, соединяющий вершину одного острого угла с точкой на противоположном катете, который отсекает на нем отрезок х. Это отрезок по условию равен 10.отсюдах^2 + (7*x)^2 = 10^2; х = √2; второе расстояние равно 6, конечно.
РЕШЕНИЕ
AF=1/2 * √(2*(AB*AB+AC*AC)-BC*BC)
CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB)
Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом.
По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно:
CO=2/3 * CDOF=1/3 * AF
По теореме Пифагора CF*CF=OF*OF+CO*CO
Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см.
Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см.
(Для любителей тупых решений скажу сразу, х является решением тригонометрического уравненияpi/4 = arccos(x/10) + arccos(x*3*√2/10);Однако все гораздо приятнее)
Продолжим отрезок длинны х до пересячения со второй стороной угла. Получим прямоугольный равнобедренный треугольник, у которого катет равен х+х*3*√2*√2 = 7*х, и в нем отрезок, соединяющий вершину одного острого угла с точкой на противоположном катете, который отсекает на нем отрезок х. Это отрезок по условию равен 10.отсюдах^2 + (7*x)^2 = 10^2; х = √2; второе расстояние равно 6, конечно.