Укажите верное утверждение. аГрафик функции у = kx, если k ˂ 0, проходит через начало координат и расположен в Ι и ΙΙΙ координатных четвертях
бГрафики двух линейных функций параллельны, если коэффициенты равны k₁ = k₂
вДля функции, заданной формулой у = 3х -6, значение функции равно 0, если значение аргумента равно - 2
гГрафиком линейной функции является луч
ответ:Номер 3
<1=7Х
<2=2Х
7Х+2Х=180 градусов,как односторонние
9Х=180
Х=180:9
Х=20
<1=20•7=140 градусов
<2=20•2=40 градусов
<3=<2=40 градусов,как накрест лежащие
Номер 4
<3 и противоположный ему-вертикальные и равны между собой
Этот вертикальный и угол 4 называются односторонними,и если прямые параллельны,то они в сумме равны 180 градусов
47+133=180 градусов
а|| b
Тут тоже самое
Угол 2 и противоположный ему угол называются вертикальными и равны между собой
Этот вертикальный и угол 1- односторонние
<1+<2=180 градусов,как односторонние
<1=(180-58):2=61 градус
<2=61+58=119 градусов
Номер 5
<МРN смежный
<МРТ=180-70=110 градусов
<МРК=<ТРК=110:2=55 градусов,
т к биссектриса делит <МРТ пополам
<ТРК=<МКР=55 градусов,как накрест лежащие при РТ || МК и секущей РК
Если при пересечении прямых секущей накрест лежащие углы равны,то прямые параллельны
<М=<К=70,как углы при основании равнобедренного треугольника или равнобедренной трапеции
<РКТ=70-55=15 градусов
Объяснение:
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²