использовано определение биссектрисы, свойство катета против угла в 30 градусов
Конечно, в условии меньший катет равен 5 см
Обозначим вершины тр-ке А,В,С, Пусть С- прямой угол. Биссектриса СМ, а высота СК.
Дано: уг. МСК = 15°. ВС = 5см.
Найти: АВ
Поскольку СМ - биссектриса, то уг. МСВ = уг. АСМ = 0,5 уг.С = 90:2 = 45°
Уг. КСВ = уг. МСВ - уг.МСК = 45° - 15° = 30°
Высота СМ, опущенная из прямого угла С, делит тр-к АВС на два тр-ка АСК и СВК, подобных тр-ку АВС.
Рассмотрим подобные тр-ки АВС и СВК.
У них общий угол В, поэтому уг. А(в тр-ке АВС) = уг. ВСК (в тр-ке СВК) = 30°
Катет ВС, лежащий против угла А, равного 30°, равен 0,5 гипотенузы АВ
Гипотенуза АВ тогда:
АВ = 2 ВС = 2·5 = 10(см)
ответ: гипотенуза АВ треугольника АВС равна 10см.
использовано определение биссектрисы, свойство катета против угла в 30 градусов
Конечно, в условии меньший катет равен 5 см
Обозначим вершины тр-ке А,В,С, Пусть С- прямой угол. Биссектриса СМ, а высота СК.
Дано: уг. МСК = 15°. ВС = 5см.
Найти: АВ
Поскольку СМ - биссектриса, то уг. МСВ = уг. АСМ = 0,5 уг.С = 90:2 = 45°
Уг. КСВ = уг. МСВ - уг.МСК = 45° - 15° = 30°
Высота СМ, опущенная из прямого угла С, делит тр-к АВС на два тр-ка АСК и СВК, подобных тр-ку АВС.
Рассмотрим подобные тр-ки АВС и СВК.
У них общий угол В, поэтому уг. А(в тр-ке АВС) = уг. ВСК (в тр-ке СВК) = 30°
Катет ВС, лежащий против угла А, равного 30°, равен 0,5 гипотенузы АВ
Гипотенуза АВ тогда:
АВ = 2 ВС = 2·5 = 10(см)
ответ: гипотенуза АВ треугольника АВС равна 10см.