Сечение шара плоскостью АВС есть окружность. Пусть её центр будет точка Е. По условию АС⊥АВ, следовательно ΔАВС прямоугольный. Тогда ВС²=АВ²+АС²=6²+(6√2)²=6²+2(6)²=3(6)²⇒ВС=6√3 см
Так как ΔАВС прямоугольный, то точка Е середина гипотенузы ВС.
ВЕ=0,5ВС=0,5·6√3=3√3 см
Как известно, отрезок соеденяющий центр сферы с центром любой окружности, являющейся её сечением, есть перпендикуляр к плоскости этого сечения.
Предположим, что каждая из сторон четырёхугольника ABCD меньше √2/2 Тогда квадрат длины каждой стороны меньше 1/2. Среди четырёх углов, образованных пересекающимися прямыми AB и CD, есть два неострых угла. Рассмотрим стороны четырёхугольника, расположенные в этих неострых углах. Сумма квадратов их длин меньше 1. Квадрат длины стороны треугольника, лежащей против неострого угла, не меньше суммы квадратов длин двух других сторон треугольника. Поэтому сумма квадратов длин четырёх отрезков, на которые делятся отрезки AB и CD точкой пересечения, меньше 1. С другой стороны, каждый из этих отрезков делится точкой пересечения на два отрезка, сумма квадратов длин которых не меньше 1/2 поскольку x^2 + (1 - x)^2 = 2(x - 1/2)^2+1/2>=1/2Получено противоречие.
S=144π см²≈452,39 см²
V=288π см³≈904,78 см²
Объяснение:
Радиус шара R.
Сечение шара плоскостью АВС есть окружность. Пусть её центр будет точка Е. По условию АС⊥АВ, следовательно ΔАВС прямоугольный. Тогда ВС²=АВ²+АС²=6²+(6√2)²=6²+2(6)²=3(6)²⇒ВС=6√3 см
Так как ΔАВС прямоугольный, то точка Е середина гипотенузы ВС.
ВЕ=0,5ВС=0,5·6√3=3√3 см
Как известно, отрезок соеденяющий центр сферы с центром любой окружности, являющейся её сечением, есть перпендикуляр к плоскости этого сечения.
Рассмотрим ΔОВЕ. ∠ОЕВ=90°, ∠OBC = 30°, ВЕ=3√3 см.
R=OB=BE/cos∠OBC =3√3/cos 30°=3√3/(0,5√3)=6 см.
S=4πR²=4π·6²=144π см²
V=(4/3)πR³=(4/3)π·6³=288π см³
Решение
Предположим, что каждая из сторон четырёхугольника ABCD меньше √2/2 Тогда квадрат длины каждой стороны меньше 1/2. Среди четырёх углов, образованных пересекающимися прямыми AB и CD, есть два неострых угла. Рассмотрим стороны четырёхугольника, расположенные в этих неострых углах. Сумма квадратов их длин меньше 1. Квадрат длины стороны треугольника, лежащей против неострого угла, не меньше суммы квадратов длин двух других сторон треугольника. Поэтому сумма квадратов длин четырёх отрезков, на которые делятся отрезки AB и CD точкой пересечения, меньше 1. С другой стороны, каждый из этих отрезков делится точкой пересечения на два отрезка, сумма квадратов длин которых не меньше 1/2 поскольку x^2 + (1 - x)^2 = 2(x - 1/2)^2+1/2>=1/2Получено противоречие.