1. Диагональ основания d, согласно теореме Пифагора:
d = √(3²+8²) = √(9+64) =√73 см.
2. Диагональ основания d является проекцией на плоскость основания диагонали фигуры D.
3. В прямоугольном треугольнике, образованном диагональю фигуры D, её проекцией d на плоскость основания, а также высотой H прямоугольного параллелепипеда:
D - является гипотенузой, а d и Н - катетами.
Так как D наклонена к плоскости основания под углом 60°, то это означает, что угол между D и d равен 60°.
4. Катет H равен другому катету d, умноженному на тангенс угла противолежащего этому катету:
ΔАВС - прямоугольный (∟В = 90 °). ΔА 1 В 1 С 1 - прямоугольный (∟В 1 = 90 °). ВС = B 1 C 1 ; BN - биссектриса ∟АВС; B1N1 - биссектриса Δ А 1 В 1 С 1 . Доказать: ΔАВС = Δ А 1 В 1 С 1 . Док-во: По условию ∟ABC = 90 ° и BN - биссектриса ∟ABC. По определению биссектрисы угла имеем: ∟ABN = ∟NBC = 90 °: 2 = 45 °. Аналогично B 1 N 1 - биссектриса ∟ А 1 В 1 С 1, тогда ∟A 1 B 1 N 1 = ∟N 1 B 1 C 1 = 45 °. Рассмотрим ΔNBC и Δ N 1 B 1 C 1 : 1) BN = B 1 N 1 (по условию) 2) ВС = В 1 С 1 (по условию) 3) ∟NBC = ∟ N 1 B 1 C 1 = 45 °. по 1 признаку pавенства треугольников имеем: ΔNВС = Δ N 1 B 1 C 1 . Отсюда ∟C = ∟С 1 . Рассмотрим ΔАВС и Δ А 1 В 1 С 1 : 1) ∟ABC = ∟ А 1 В 1 С 1 = 90 °; 2) ВС = B 1 C 1 ; 3) ∟C = ∟С 1 . По признаку pавенства прямоугольных треугольников имеем: ΔАВС = Δ А 1 В 1 С 1 .
√219 ≈ 14,8 см
Объяснение:
1. Диагональ основания d, согласно теореме Пифагора:
d = √(3²+8²) = √(9+64) =√73 см.
2. Диагональ основания d является проекцией на плоскость основания диагонали фигуры D.
3. В прямоугольном треугольнике, образованном диагональю фигуры D, её проекцией d на плоскость основания, а также высотой H прямоугольного параллелепипеда:
D - является гипотенузой, а d и Н - катетами.
Так как D наклонена к плоскости основания под углом 60°, то это означает, что угол между D и d равен 60°.
4. Катет H равен другому катету d, умноженному на тангенс угла противолежащего этому катету:
Н = d · tg 60° = √73 · √3 = √219 ≈ 14,8 см
ответ: √219 ≈ 14,8 см