В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число. В этом случае бином представляет собой бесконечный ряд (см. ниже).
Введём обозначения, AC=b, AB=c, CB=a=8, R- радиус описанной окружности, S - площадь, расстояние или же высота - h
По т.синусов 8/(2*sin60°)=R=8/√3
Пусть bc=x
Составим выражение нахождения площади через синус : S=1/2x*sin∠A=(x*sin∠A)/2
Составим выражение нахождения площади через R : S=ax/2R
Объеденим эти выражения в систему:
Выразим в обоих системах x:
Подставив имеющиеся данные:
x=2S*8/8√3
x=√3S
√3x=2S | S=√3x/2
√3S=x
x=bc=1.5
S=0.75√3
Вывод:
Я так понимаю у меня ошибка в системе, но это не отменяет того факта что больше в задаче ничего найти нельзя кроме разных побочных элементов которые не найти ответ, который вы запросили. Треугольник либо прямоугольный, либо в задаче надо найти радиус описанной окружности. Ну либо я всё усложнил слишком сильно и не вижу простейшего решения
Объяснение:
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
{\displaystyle (a+b)^{n}=\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b^{k}={n \choose 0}a^{n}+{n \choose 1}a^{n-1}b+\dots +{n \choose k}a^{n-k}b^{k}+\dots +{n \choose n}b^{n}}(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где {\displaystyle {n \choose k}={\frac {n!}{k!(n-k)!}}=C_{n}^{k}}{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, {\displaystyle n}n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число. В этом случае бином представляет собой бесконечный ряд (см. ниже).
Задачу невозможно решить
Объяснение:
Введём обозначения, AC=b, AB=c, CB=a=8, R- радиус описанной окружности, S - площадь, расстояние или же высота - h
По т.синусов 8/(2*sin60°)=R=8/√3
Пусть bc=x
Составим выражение нахождения площади через синус : S=1/2x*sin∠A=(x*sin∠A)/2
Составим выражение нахождения площади через R : S=ax/2R
Объеденим эти выражения в систему:
Выразим в обоих системах x:
Подставив имеющиеся данные:
x=2S*8/8√3
x=√3S
√3x=2S | S=√3x/2
√3S=x
x=bc=1.5
S=0.75√3
Вывод:
Я так понимаю у меня ошибка в системе, но это не отменяет того факта что больше в задаче ничего найти нельзя кроме разных побочных элементов которые не найти ответ, который вы запросили. Треугольник либо прямоугольный, либо в задаче надо найти радиус описанной окружности. Ну либо я всё усложнил слишком сильно и не вижу простейшего решения