хорда a=5√2 окружности стягивает дугу в 90 градусов - это значит, центральный угол , который опирается на эту дугу(хорду) равен 90 град
тогда отрезки (хорда +радиус+радиус) образуют прямоугольный равнобедренный треугольник с углом при вершине <O= 90 град ., здесь хорда-основание, радиусы - боковые стороны, углы при основании равны между собой <A=<B= (180-<O) /2 =(180-90) /2 =45град -тогда радиус окружности R =a/√2 = 5√2 /√2= 5
полный круг/окружность - это 360 град , тогда
длина дуги 90 град - 1/4 окружности 1/4*2п*R =п/2 *5 =5п/2
площадь сектора 90 град - 1/4 площади круга 1/4*пR^2=п/4 *25=25п/4
хорда a=5√2 окружности стягивает дугу в 90 градусов - это значит, центральный угол , который опирается на эту дугу(хорду) равен 90 град
тогда отрезки (хорда +радиус+радиус) образуют прямоугольный равнобедренный треугольник с углом при вершине <O= 90 град ., здесь хорда-основание, радиусы - боковые стороны, углы при основании равны между собой <A=<B= (180-<O) /2 =(180-90) /2 =45град -тогда радиус окружности R =a/√2 = 5√2 /√2= 5
полный круг/окружность - это 360 град , тогда
длина дуги 90 град - 1/4 окружности 1/4*2п*R =п/2 *5 =5п/2
площадь сектора 90 град - 1/4 площади круга 1/4*пR^2=п/4 *25=25п/4
Хорда длиной 8√2 см стягивает дугу в 30°. Найдите площадь кругового сектора соответствующего этой дуге.
=====================================================
▪Найдём радиус круга из ΔАОВ:Пусть АО = ВО = х , тогда по теореме косинусов следует:АВ² = АО² + ВО² - 2•АО•ВО•cos∠O( 8√2 )² = x² + x² - 2•x•x•cos30°128 = 2x² - 2x²•( √3/2 )128 = 2x² - √3•x²x²•( 2 - √3 ) = 128Значит, АО = ВО = R = 8•( 1 + √3 )Но находить радиус круга необязательно, что можно удостовериться в процессе решения.
▪Площадь кругового сектора вычисляется по формуле:S = п•R²•α / 360°где R - радиус круга , α - градусная мера соответствующего центрального угла
S = п•128•( 2 + √3 )•30° / 360° = п•128•( 2 + √3 ) / 12 = п•32•( 2 + √3 ) / 3 ≈ 124ОТВЕТ: п•32•( 2 + √3 ) / 3 ( ≈ 124 )