Точки касания поверхности сферы и плоскостей ASB, BSC и ASC - это точки касания касательных к поверхности шара, проведённых из точки S. Все касательные к сфере, проведённые из одной точки, равны. В нашем случае это 4√3 см. Касательная и радиус окружности, проведённый к точке касания, перпендикулярны, значит достаточно рассмотреть один прямоугольный треугольник, образованный радиусом шара ОМ, касательной SM и искомым расстоянием SО, где SO²=SM²+ОМ².
Площадь сферы: S=4πR² ⇒ R=√(S/4π)=√(64π/4π)=4 см. SO²=(4√3)²+4²=64, SO=8 см - это ответ.
Построение можно представить в виде перевёрнутой правильной треугольной пирамиды без основания в которую поместили шар, касающийся своей поверхностью боковых граней пирамиды.
Параллелограмм – четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Противоположные стороны параллелограмма попарно равны. Признаки: 1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом. 2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом. 3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом. 1 признак: Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
Все касательные к сфере, проведённые из одной точки, равны. В нашем случае это 4√3 см. Касательная и радиус окружности, проведённый к точке касания, перпендикулярны, значит достаточно рассмотреть один прямоугольный треугольник, образованный радиусом шара ОМ, касательной SM и искомым расстоянием SО, где SO²=SM²+ОМ².
Площадь сферы: S=4πR² ⇒ R=√(S/4π)=√(64π/4π)=4 см.
SO²=(4√3)²+4²=64,
SO=8 см - это ответ.
Построение можно представить в виде перевёрнутой правильной треугольной пирамиды без основания в которую поместили шар, касающийся своей поверхностью боковых граней пирамиды.
Признаки:
1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.
2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.
3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
1 признак:
Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.