Медиана АN делит треугольник АВС на два равновеликих треугольника, то есть площадь треугольника АВN равна половине площади АВС. Действительно Основания треугольников АВN и АСN равны (ВN = СN), высота общая.
Опустим перпендикуляр АР на сторону ВС и перпендикуляр МR на сторону ВС.
Треугольники АРN и МRN подобны. АN:MN = AP:NR.
Точка персечения медиан М делит медианы на отрезки с сотношением длинн 2:1, считая от вершины,
то есть АМ: MN. Отсюда АN:MN = 3:1, значит AP:NR = 3:1. AP и NR - высоты треугольников АВN и МВN с общим основанием ВN,
поэтому площадь МВN = (1/3)*(площадь АВN) = (1/3)*(1/2)*(площадь АВС) = (1/6)*(площадь АВС).
Медиана АN делит треугольник АВС на два равновеликих треугольника, то есть площадь треугольника АВN равна половине площади АВС. Действительно Основания треугольников АВN и АСN равны (ВN = СN), высота общая.
Опустим перпендикуляр АР на сторону ВС и перпендикуляр МR на сторону ВС.
Треугольники АРN и МRN подобны. АN:MN = AP:NR.
Точка персечения медиан М делит медианы на отрезки с сотношением длинн 2:1, считая от вершины,
то есть АМ: MN. Отсюда АN:MN = 3:1, значит AP:NR = 3:1. AP и NR - высоты треугольников АВN и МВN с общим основанием ВN,
поэтому площадь МВN = (1/3)*(площадь АВN) = (1/3)*(1/2)*(площадь АВС) = (1/6)*(площадь АВС).
Отсюда площадь АВС = 6*(площадь МВN) = 6*15 = 90.
Объяснение:
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.
Объяснение:
1) Если это боковые стороны, то тогда длина третьей стороны (основания):
36 - 26 = 10 см.
А боковые стороны равны:
26 : 2 = 13 см
2) Если это одна боковая сторона и основание, то тогда составляем систему уравнений и решаем её.
х - основание,
у - боковая сторона,
х + у = 26 - это первое уравнение,
х + 2у = 36 - это второе уравнение.
Умножаем первое уравнение на 2 и из полученного результата вычитаем второе уравнение, получаем:
2х + 2у = 52 - домножили первое уравнение на 2
2х - х + 2у- 2у = 52 -36
х = 16 см - это основание,
тогда боковые стороны равны:
(36 - 16) : 2 = 20 : 2 = 10 см
Так как сумма 2-х сторон больше длины основания, то стороны пересекутся, значит, такой треугольник существует.
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.