У трикутнику АВС бисектриси точка дотику вписаногго Кола делит бичную сторону равнобедреного трикутника на отрезки 3 см и 5 см начиная от основи. найдите периметр
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
DB₁² = AB² + AD² + AA₁²
x² + x² + (2x)² = (2√6)²
2x² + 4x² = 24
6x² = 24
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 2, AD = 2, АА₁ = 4.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁D - наклонная, BD - ее проекция, тогда угол между В₁D и плоскостью АВС - ∠В₁DB.
Обозначим наклонные a, b... т.к. наклонные образуют с плоскостью равные углы и проведены из одной точки, то эти наклонные равны... т.к. перпендикуляр, опущенный на плоскость, с одной стороны = a*sin(Ф) = b*sin(Ф) = h => a=b их проекции тоже равны (обозначим p)))... отрезок, соединяющий концы наклонных на плоскости --- (с) искомый угол (х)... угол между наклонной и плоскостью --- угол между наклонной и ее проекцией... из прямоугольного треугольника по определению косинуса можно записать: p = a*cos(Ф) по т.косинусов c^2 = 2*a^2 - 2*a^2*cos(β) = 2*a^2*(1 - cos(β)) c^2 = 2*p^2 - 2*p^2*cos(x) = 2*p^2*(1 - cos(x)) = 2*a^2*(cos(Ф))^2 * (1 - cos(x)) эти равенства можно приравнять... 1 - cos(x) = (1 - cos(β) / (cos(Ф))^2 cos(x) = 1 - (1 - cos(β) / (cos(Ф))^2 угол равен арккосинусу этого выражения...
По условию АВ : AD : AA₁ = 1 : 1 : 2
Пусть х - коэффициент пропорциональности. Тогда
АВ = AD = x
АА₁ = 2х
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
DB₁² = AB² + AD² + AA₁²
x² + x² + (2x)² = (2√6)²
2x² + 4x² = 24
6x² = 24
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 2, AD = 2, АА₁ = 4.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁D - наклонная, BD - ее проекция, тогда угол между В₁D и плоскостью АВС - ∠В₁DB.
ΔB₁BD:
sin∠B₁DB = BB₁ / B₁D = 4 / (2√6) = 2/√6 = √6/3
∠B₁DB = arcsin (√6/3)
т.к. наклонные образуют с плоскостью равные углы и проведены из одной точки, то эти наклонные равны...
т.к. перпендикуляр, опущенный на плоскость,
с одной стороны = a*sin(Ф) = b*sin(Ф) = h => a=b
их проекции тоже равны (обозначим p)))...
отрезок, соединяющий концы наклонных на плоскости --- (с)
искомый угол (х)...
угол между наклонной и плоскостью --- угол между наклонной и ее проекцией...
из прямоугольного треугольника по определению косинуса можно записать:
p = a*cos(Ф)
по т.косинусов c^2 = 2*a^2 - 2*a^2*cos(β) = 2*a^2*(1 - cos(β))
c^2 = 2*p^2 - 2*p^2*cos(x) = 2*p^2*(1 - cos(x)) = 2*a^2*(cos(Ф))^2 * (1 - cos(x))
эти равенства можно приравнять...
1 - cos(x) = (1 - cos(β) / (cos(Ф))^2
cos(x) = 1 - (1 - cos(β) / (cos(Ф))^2
угол равен арккосинусу этого выражения...