1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
Объяснение:
Если это та задача.
Сумма углов выпуклого n-угольника вычисляется по формуле:
180° · (n - 2).
1.
а) n = 10
180° · (10 - 2) = 180° · 8 = 1440°
б) n = 12
180° · (12 - 2) = 180° · 10 = 1800°
2.
а) 1080° = 180° · (n - 2)
n - 2 = 1080° : 180°
n - 2 = 6
n = 8
б) 1320° = 180° · (n - 2)
n - 2 = 1320° : 180°
n - 2 = 7 1/3
так как n натуральное число, то многоугольника с суммой углов 1320° не существует.
в) 3960° = 180° · (n - 2)
n - 2 = 3960° : 180°
n - 2 = 22
n = 24
г) 1800° = 180° · (n - 2)
n - 2 = 1800° : 180°
n - 2 = 10
n = 12
Объяснение:
ПРОСТИТЕ ЕСЛИ НЕ ПРАВИЛЬНО