1)прямым может быть только угол при вершине, т.к. углы при основании равны, но два прямых угла в треугольнике быть не может.
2)внешний угол при основании не может быть тупым -ошибочка, т.к. равные углы при основании могут быть только острые, значит, внешние только тупые. А можно и так- внешний угол равен сумме двух внутренних, с ним не смежных. Т.к. один угол при вершине заведомо прямой, то сумма прямого и острого дает тупой угол.
3)внешний угол при вершине может быть только острым-опять мимо. Пояснение найдете в п. 2)
4)любой из углов может быть прямым - нет. объяснение в п. 1)
.Проведем SO — высоту пирамиды и перпендикуляры SK, SM и SN к соответствующим сторонам ΔАВС. Тогда по теореме о трех перпендикулярах OK ⊥ ВС, ОМ ⊥ АС и ON ⊥ AB. Так что ∠SKO = ∠SMO = ∠SNO = 60° — линейные углы данных двугранных углов. Значит, треугольники SKO, SMO и SNO равны по катету и остромууглу. Тогда OM = OK = ON, то есть точка О является центром окружности, вписанной в основание. В прямоугольном ΔAВС: 1. В правильной пирамиде все боковые рёбра равны, все боковые грани - равные равнобедренные тр-ки. Высота боковой грани называется апофемой правильной пирамиды. Следовательно, имеем боковую грань(равнобедр. тр-к с основанием=12 и высотой(апофемой)=15 см Высота равнобедр. тр-ка делит основание пополам и образует прямоуг. тр-к со стороной основания и бок. ребром пирамиды. Тогда по Пифагору: Бок. ребро=корень кв. из (6^2+15^2)=корень кв. из 261
1)прямым может быть только угол при вершине, т.к. углы при основании равны, но два прямых угла в треугольнике быть не может.
2)внешний угол при основании не может быть тупым -ошибочка, т.к. равные углы при основании могут быть только острые, значит, внешние только тупые. А можно и так- внешний угол равен сумме двух внутренних, с ним не смежных. Т.к. один угол при вершине заведомо прямой, то сумма прямого и острого дает тупой угол.
3)внешний угол при вершине может быть только острым-опять мимо. Пояснение найдете в п. 2)
4)любой из углов может быть прямым - нет. объяснение в п. 1)
Следовательно, имеем боковую грань(равнобедр. тр-к с основанием=12 и высотой(апофемой)=15 см Высота равнобедр. тр-ка делит основание пополам и образует прямоуг. тр-к со стороной основания и бок. ребром пирамиды. Тогда по Пифагору:
Бок. ребро=корень кв. из (6^2+15^2)=корень кв. из 261