У рівнобедреному трикутнику бічна сторона ділиться точкою дотику вписаного кола у відношенні 5 : 7,починаючи від основи знайдіть периметр трикутника якщо його основа 10см
1. Опустим в треугольнике высоту на гипотенузу и спроектируем ее на плоскость. Эта высота равна ab/c, как широко известно. 2. Имеем вертикальный прямоугольный треугольник с гипотенузой ab/c и углом fi. Расстояние от вершины прямого угла исходного треугольника до плоскости - это противолежащий катет в этом вертикальном треугольнике. Он (катет) равен ab*sin(fi)/c по определению синуса. 3. Тогда другой вертикальный прямоуг. треуг. имеет гипотенузу a, катет ab*sin(fi)/c. А нам нужно найти угол между этой гипотенузой а и прилежащим катетом. По определению все того же синуса угол равен arcsin(b*sin(fi)/c). Короче, ... в твоем случае угол равен arcsin(1/2)=30 градусов.
1. Опустим в треугольнике высоту на гипотенузу и спроектируем ее на плоскость. Эта высота равна ab/c, как широко известно.
2. Имеем вертикальный прямоугольный треугольник с гипотенузой ab/c и углом fi. Расстояние от вершины прямого угла исходного треугольника до плоскости - это противолежащий катет в этом вертикальном треугольнике. Он (катет) равен ab*sin(fi)/c по определению синуса.
3. Тогда другой вертикальный прямоуг. треуг. имеет гипотенузу a, катет ab*sin(fi)/c. А нам нужно найти угол между этой гипотенузой а и прилежащим катетом. По определению все того же синуса угол равен arcsin(b*sin(fi)/c).
Короче, ... в твоем случае угол равен arcsin(1/2)=30 градусов.
Начерти трапецию АВСД. Верхнее основание АВ, нижнее основание ДС.
Из вершин А и В опусти высоты АЕ и ВМ. Высоты у трапеции равны, АЕ = ВМ.
Тогда ЕМ = АВ = 6см. ДЕ + МС = 27 - 6 = 21(см)
пусть ДЕ = х см, тогда МС = (21 - х)см
В треугольнике АДЕ по теореме Пифагора АЕ^2 = 13^2 - x^2 = 169 - x^2.
в треугольнике ВМС по теореме Пифагора ВМ^2 = 20^2 - (21 - x)^2 = 400 - (21 - x)^2
Т.к.АЕ = ВМ, то получим уравнение:
169 - x^2 = 400 - (21 - x)^2
169 - x^2 = 400 - 441 + 42х - х^2
169 = -41 + 42x
42х = 169 + 41
42х = 210
х = 5
ДЕ = 5см
По теореме Пифагора в треугольнике АДЕ найдем АЕ.
АЕ^2 = 13^2 - 5^2 =169 - 25 = 144, тогда АЕ = корень из 144 = (12)см
Т.е. мы нашли высоту трапеции АЕ.
S = (АВ+ДС)/2 * АЕ
S= (6+27)/2 *12 = 198(кв.см)
ответ: 198 кв.см. УДАЧИ!!