ответ:6
Объяснение:
Поскольку CD - высота, то угол CDA = 90°.
Рассмотрим получившийся прямоугольный треугольник. Поскольку нам известно, что угол СAD = 30°, то против угла 30° лежит катет, равный половине гипотенузы.
Обозначим его за x. Тогда гипотенуза АС равняется 2 * x.
Воспользуемся теоремой Пифагора:
(2 * x)^2 = x^2 + 18^2;
4 * x^2 - x^2 = 324;
3 * x^2 = 324;
x^2 = 108;
x = √108 = √(9 * 12) = 3 * √12 = 3 * √(4 * 3) = 3 * 2 * √3 = 6 * √3.
AC = 2 * 6 * √3 = 12 * √3
Рассмотрим прямоугольный треугольник АВС. Поскольку нам известно, что угол СAВ = 30°, то против угла 30° лежит катет, равный половине гипотенузы.
Обозначим его за y. Тогда гипотенуза АB равняется 2 * y.
(2 * y)^2 = y^2 + (12 * √3)^2;
4 * y^2 - y^2 = 12^2 * 3;
3 * y^2 = 144 * 3;
y^2 = 144;
y = 12.
AB = 2 * 12 = 24.
Значит:
BD = AB - AD = 24 - 18 = 6 см.
О- точка пересечения серединных перпендикуляров ( ОМ, ОN и АО)
следовательно, точка пересечения серединных перпендикуляров делит треугольник на шесть равных треугольников
следовательно, треугольник АВС - равносторонний
найдем угол МОА
ОН - является высотой для стороны ВС и делит угол ВОС пополам
следовательно, угол ВОН равен 30 градусов
рассмотрим прямую НА = 180 градусов
следовательно, угол ВОА равен 150 градусов
следовательно, угол МОА равен 150-90=60 градусов ( т.к. угол ОМА = 90)
следовательно, найдем угол МАО = 180-(90+60)=30
рассмотрим треугольник МАО
сторона лежащия на против угла в 30 градусов , равна половине гипотенузы , следовательно сторона МО = 12
по теореме Пифагора найдем сторону АО = 21
рассмотрим треугольник АВН
ВН=12
АН=42
АВ^2 = корень из 42^2+12^2
АВ = 40
АВ=ВС=40
ВС=40
Возможно кто-то напишет простое решение ( возможно это не совсем правильно)
ответ:6
Объяснение:
Поскольку CD - высота, то угол CDA = 90°.
Рассмотрим получившийся прямоугольный треугольник. Поскольку нам известно, что угол СAD = 30°, то против угла 30° лежит катет, равный половине гипотенузы.
Обозначим его за x. Тогда гипотенуза АС равняется 2 * x.
Воспользуемся теоремой Пифагора:
(2 * x)^2 = x^2 + 18^2;
4 * x^2 - x^2 = 324;
3 * x^2 = 324;
x^2 = 108;
x = √108 = √(9 * 12) = 3 * √12 = 3 * √(4 * 3) = 3 * 2 * √3 = 6 * √3.
AC = 2 * 6 * √3 = 12 * √3
Рассмотрим прямоугольный треугольник АВС. Поскольку нам известно, что угол СAВ = 30°, то против угла 30° лежит катет, равный половине гипотенузы.
Обозначим его за y. Тогда гипотенуза АB равняется 2 * y.
Воспользуемся теоремой Пифагора:
(2 * y)^2 = y^2 + (12 * √3)^2;
4 * y^2 - y^2 = 12^2 * 3;
3 * y^2 = 144 * 3;
y^2 = 144;
y = 12.
AB = 2 * 12 = 24.
Значит:
BD = AB - AD = 24 - 18 = 6 см.
О- точка пересечения серединных перпендикуляров ( ОМ, ОN и АО)
следовательно, точка пересечения серединных перпендикуляров делит треугольник на шесть равных треугольников
следовательно, треугольник АВС - равносторонний
найдем угол МОА
ОН - является высотой для стороны ВС и делит угол ВОС пополам
следовательно, угол ВОН равен 30 градусов
рассмотрим прямую НА = 180 градусов
следовательно, угол ВОА равен 150 градусов
следовательно, угол МОА равен 150-90=60 градусов ( т.к. угол ОМА = 90)
следовательно, найдем угол МАО = 180-(90+60)=30
рассмотрим треугольник МАО
сторона лежащия на против угла в 30 градусов , равна половине гипотенузы , следовательно сторона МО = 12
по теореме Пифагора найдем сторону АО = 21
рассмотрим треугольник АВН
ВН=12
АН=42
АВ^2 = корень из 42^2+12^2
АВ = 40
АВ=ВС=40
ВС=40
Возможно кто-то напишет простое решение ( возможно это не совсем правильно)