У прямой четырёхугольной призмы в основании лежит ромб с углом 60° и стороной 7 см. Определи площадь большего диагонального сечения, если высота призмы — 9 см.
ответ: площадь большего диагонального сечения равна −−−−−√см2.
Примем а = 1. Поместим куб в систему координат вершиной В в начало и ребром ВА по оси ОХ. а) Определяем координаты точек: А(4;0;0), Р(2;4;0), А1(4;0;4), С(0;4;0). Находим координаты середин отрезков A1С и АР (точки Е и К соответственно): Е(2;2;2), К(3;2;0). Расстояние между серединами отрезков A1С и АР равно: ЕК = √(1²+0²+2²) = √5. С учетом коэффициента "а" ЕК = а√5.
4) Если скалярное произведение двух векторов равно нулю, то угол между ними составляет 90 градусов. По условию вектор b направлен по оси ОZ (его координаты {0; 0; -5}). Поэтому любая точка в плоскости ХОУ составляет прямой угол с вектором b. ответ: М ∈ ХОУ.
Через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.
Точки A,B и D не лежат на одной прямой. Тогда через них проходит единственная плоскость m. Докажем, что точка С также лежит в m.
Известно, что если две точки прямой лежат в некоторой плоскости, то вся прямая лежит в этой плоскости (то есть, все точки прямой лежат в этой плоскости). Точки А и В прямой a лежат в плоскости m, тогда все точки прямой a также лежат в плоскости m. Точка С лежит на прямой a, тогда точка С лежит в плоскости m. Таким образом, все четыре точки А,В,С,D лежат в плоскости m, что и требовалось доказать.
Поместим куб в систему координат вершиной В в начало и ребром ВА по оси ОХ.
а) Определяем координаты точек:
А(4;0;0),
Р(2;4;0),
А1(4;0;4),
С(0;4;0).
Находим координаты середин отрезков A1С и АР (точки Е и К соответственно): Е(2;2;2), К(3;2;0).
Расстояние между серединами отрезков A1С и АР равно:
ЕК = √(1²+0²+2²) = √5.
С учетом коэффициента "а" ЕК = а√5.
4) Если скалярное произведение двух векторов равно нулю, то угол между ними составляет 90 градусов.
По условию вектор b направлен по оси ОZ (его координаты {0; 0; -5}).
Поэтому любая точка в плоскости ХОУ составляет прямой угол с вектором b.
ответ: М ∈ ХОУ.
Точки A,B и D не лежат на одной прямой. Тогда через них проходит единственная плоскость m. Докажем, что точка С также лежит в m.
Известно, что если две точки прямой лежат в некоторой плоскости, то вся прямая лежит в этой плоскости (то есть, все точки прямой лежат в этой плоскости). Точки А и В прямой a лежат в плоскости m, тогда все точки прямой a также лежат в плоскости m. Точка С лежит на прямой a, тогда точка С лежит в плоскости m. Таким образом, все четыре точки А,В,С,D лежат в плоскости m, что и требовалось доказать.