В повседневной жизни нам часто приходится сталкиваться с измерением высот зданий, сооружений, а также с измерением расстояний, которые мы или проехали. С точки зрения геометрии мы имеем в таких случаях дело с измерением отрезков.
Измерение отрезков основано на сравнении их с некоторым отрезком, принятым за единицу измерения. Такой отрезок также называют масштабным отрезком.
Давайте определим длину некоторого отрезка АВ, приняв за единицу измерения сантиметр (рисунок 1). Видим, что в данном отрезке АВ сантиметр укладывается ровно четыре раза, а это означает, что его длина равна четыре сантиметра. Обычно говорят кратко: «Отрезок А В равен четыре сантиметра». А записывают так: АВ = 4 см.
Рисунок 1.
Но может оказаться так, что отрезок, принятый за единицу измерения не укладывается целое число раз в измеряемом отрезке.
Возьмём отрезок CD (рисунок 2). Сантиметр укладывается в отрезок пять раз, но при этом получается остаток. В таком случае единицу измерения необходимо разделить на равные части, обычно делят на десять равных частей, и определить, сколько таких частей укладывается в остатке. В нашем случае в остатке шесть раз укладывается десятая часть отрезка, поэтому длина отрезка CD равна пять целых шесть десятых сантиметра. Отметим, что одну десятую часть сантиметра называют миллиметром (мм).
Рисунок 2.
Однако может возникнуть ситуация, когда и миллиметр не будет укладываться в остатке целое число раз, и получится новый остаток. Тогда и миллиметр можно разделить на 10 частей и продолжить процесс измерения.
Единицей измерения отрезка может быть не только сантиметр, но и другой отрезок.
Выбрав единицу измерения, можно измерить любой отрезок, т. е. выразить его длину некоторым положительным числом.
Исходя из проделанного выше, можно сказать, что это число показывает, сколько раз единица измерения и её части укладываются в измеряемом отрезке.
Возьмём два равных отрезка АВ и СD (рисунок 3). Единицы измерения в этих отрезках укладываются одинаковое число раз, т. е. равные отрезки имеют равные длины.
Рисунок 3.
Если же мы возьмём два неравных отрезка KL и MN (рисунок 4), то увидим, что в меньшем отрезке MN единица измерения укладывается меньшее число раз, чем в отрезке KL, т. е. меньший отрезок имеет меньшую длину.
Рисунок 4.
Теперь рассмотрим отрезок АВ (рисунок 5). Точка С делит его на два отрезка: АС и СВ. Измерим эти отрезки. Видим, что отрезок АС равен четыре сантиметра, отрезок СВ равен три целых пять десятых сантиметра и отрезок АВ равен семь целых пять десятых сантиметра. Получили:
АС + СВ = АВ.
Таким образом, сформулируем следующее.
Когда точка делит отрезок на два отрезка, длина всего отрезка равна сумме длин этих двух отрезков.
Рисунок 5.
Следует сказать, что если длина некоторого отрезка АВ в k раз больше отрезка CD, то записывают это следующим образом: АВ=kCD.
Отметим также, что длина отрезка называется расстоянием между концами этого отрезка.
Поговорим о единицах измерения. Для измерения отрезков и нахождения расстояний используются различные единицы измерения. Стандартной международной единицей измерения отрезков является метр — отрезок, который приблизительно равен земного меридиана. Эталон метра хранится в Международном бюро мер и весов во Франции.
В одном метре сто сантиметров (1 м =100 см), а один сантиметр содержит десять миллиметров (1 см = 10 мм).
При измерении небольших расстояний, например, расстояния между точками на листе бумаги или нахождении длины карандаша за единицу измерения принимают сантиметр или миллиметр. Высоту дерева можно измерить в метрах. А вот расстояние, которое мы пройдём на лыжах, можно измерить в километрах.
Можно также использовать и такие единицы измерения, как дециметр (1 дм = 10 см), морская миля, равная одной целой восьмистам пятидесяти двум тысячным километра (1 миля = 1,852 км). А вот для измерения очень больших расстояний в астрономии используется такая единица измерения, как световой год (это путь, который проходит свет в течение одного года).
Для измерения расстояний могут использоваться различные инструменты. Например, в техническом черчении используется масштабная миллиметровая линейка. Для измерения расстояний на местности пользуются рулеткой. А вот для измерения диаметра трубки можно воспользоваться штангенциркулем.
1)у прямоугольника диагонали равны и прямоугольник это параллелограм из чего следует точка пересечения диагоналей(точка О) делит диагонали на 4 равных отрезка DO=OB=CO=AO из чего следует
треугольник АBO равнобедренный из чего следует что угол ABO = углу BAO = 36 из этого мы можем найти угол АОB = 180 - угол BAO - угол АBO = 180-72 =108
угол АОB = COD как вертикально аналогично с углами AOD и BOC
сумма 4 вертикальных углов 360 градусов из чего следует чтобы найти угол АОD нам надо (360-АОB-COD)/2=(360-216)/2=72градуса
2) у прямоугольной трапеции всегда 2 угла по 90 градусов и 20 градусов нам дан угол по условию а последний угол = 360-(первый угол+второй угол+третий угол) = 360-(90+90+20)=160
Сумма всех углов четырехугольника равна 360градусов
3) стороны параллелограма относятся 1:2 значит мы можем взять меньшую сторону за x, а большую за 2x
у параллеграма противоположные стороны равны и нам дан периметр из чего следует уравнение
x+x+2x+2x=30
6x=30
x=5
меньшая сторона равна 5
а большая следовательно 10
4)у параллелограма противоположные стороны параллельны!
нам дана биссектриса KE которая является секущей
MN и KP из чего следует что угол МЕK = углу EKP как накрест лежащие углы. Из чего следует треугольник KME равнобедренный, а по условию нам дана сторона KM =8 значит МЕ тоже равна 8
значит большая сторона параллелограма = МЕ + ЕN = 8+4=12
В повседневной жизни нам часто приходится сталкиваться с измерением высот зданий, сооружений, а также с измерением расстояний, которые мы или проехали. С точки зрения геометрии мы имеем в таких случаях дело с измерением отрезков.
Измерение отрезков основано на сравнении их с некоторым отрезком, принятым за единицу измерения. Такой отрезок также называют масштабным отрезком.
Давайте определим длину некоторого отрезка АВ, приняв за единицу измерения сантиметр (рисунок 1). Видим, что в данном отрезке АВ сантиметр укладывается ровно четыре раза, а это означает, что его длина равна четыре сантиметра. Обычно говорят кратко: «Отрезок А В равен четыре сантиметра». А записывают так: АВ = 4 см.
Рисунок 1.
Но может оказаться так, что отрезок, принятый за единицу измерения не укладывается целое число раз в измеряемом отрезке.
Возьмём отрезок CD (рисунок 2). Сантиметр укладывается в отрезок пять раз, но при этом получается остаток. В таком случае единицу измерения необходимо разделить на равные части, обычно делят на десять равных частей, и определить, сколько таких частей укладывается в остатке. В нашем случае в остатке шесть раз укладывается десятая часть отрезка, поэтому длина отрезка CD равна пять целых шесть десятых сантиметра. Отметим, что одну десятую часть сантиметра называют миллиметром (мм).
Рисунок 2.
Однако может возникнуть ситуация, когда и миллиметр не будет укладываться в остатке целое число раз, и получится новый остаток. Тогда и миллиметр можно разделить на 10 частей и продолжить процесс измерения.
Единицей измерения отрезка может быть не только сантиметр, но и другой отрезок.
Выбрав единицу измерения, можно измерить любой отрезок, т. е. выразить его длину некоторым положительным числом.
Исходя из проделанного выше, можно сказать, что это число показывает, сколько раз единица измерения и её части укладываются в измеряемом отрезке.
Возьмём два равных отрезка АВ и СD (рисунок 3). Единицы измерения в этих отрезках укладываются одинаковое число раз, т. е. равные отрезки имеют равные длины.
Рисунок 3.
Если же мы возьмём два неравных отрезка KL и MN (рисунок 4), то увидим, что в меньшем отрезке MN единица измерения укладывается меньшее число раз, чем в отрезке KL, т. е. меньший отрезок имеет меньшую длину.
Рисунок 4.
Теперь рассмотрим отрезок АВ (рисунок 5). Точка С делит его на два отрезка: АС и СВ. Измерим эти отрезки. Видим, что отрезок АС равен четыре сантиметра, отрезок СВ равен три целых пять десятых сантиметра и отрезок АВ равен семь целых пять десятых сантиметра. Получили:
АС + СВ = АВ.
Таким образом, сформулируем следующее.
Когда точка делит отрезок на два отрезка, длина всего отрезка равна сумме длин этих двух отрезков.
Рисунок 5.
Следует сказать, что если длина некоторого отрезка АВ в k раз больше отрезка CD, то записывают это следующим образом: АВ=kCD.
Отметим также, что длина отрезка называется расстоянием между концами этого отрезка.
Поговорим о единицах измерения. Для измерения отрезков и нахождения расстояний используются различные единицы измерения. Стандартной международной единицей измерения отрезков является метр — отрезок, который приблизительно равен земного меридиана. Эталон метра хранится в Международном бюро мер и весов во Франции.
В одном метре сто сантиметров (1 м =100 см), а один сантиметр содержит десять миллиметров (1 см = 10 мм).
При измерении небольших расстояний, например, расстояния между точками на листе бумаги или нахождении длины карандаша за единицу измерения принимают сантиметр или миллиметр. Высоту дерева можно измерить в метрах. А вот расстояние, которое мы пройдём на лыжах, можно измерить в километрах.
Можно также использовать и такие единицы измерения, как дециметр (1 дм = 10 см), морская миля, равная одной целой восьмистам пятидесяти двум тысячным километра (1 миля = 1,852 км). А вот для измерения очень больших расстояний в астрономии используется такая единица измерения, как световой год (это путь, который проходит свет в течение одного года).
Для измерения расстояний могут использоваться различные инструменты. Например, в техническом черчении используется масштабная миллиметровая линейка. Для измерения расстояний на местности пользуются рулеткой. А вот для измерения диаметра трубки можно воспользоваться штангенциркулем.
1)72градуса
2)20,90,90,160
3)5,10
4)40
Объяснение:
1)у прямоугольника диагонали равны и прямоугольник это параллелограм из чего следует точка пересечения диагоналей(точка О) делит диагонали на 4 равных отрезка DO=OB=CO=AO из чего следует
треугольник АBO равнобедренный из чего следует что угол ABO = углу BAO = 36 из этого мы можем найти угол АОB = 180 - угол BAO - угол АBO = 180-72 =108
угол АОB = COD как вертикально аналогично с углами AOD и BOC
сумма 4 вертикальных углов 360 градусов из чего следует чтобы найти угол АОD нам надо (360-АОB-COD)/2=(360-216)/2=72градуса
2) у прямоугольной трапеции всегда 2 угла по 90 градусов и 20 градусов нам дан угол по условию а последний угол = 360-(первый угол+второй угол+третий угол) = 360-(90+90+20)=160
Сумма всех углов четырехугольника равна 360градусов
3) стороны параллелограма относятся 1:2 значит мы можем взять меньшую сторону за x, а большую за 2x
у параллеграма противоположные стороны равны и нам дан периметр из чего следует уравнение
x+x+2x+2x=30
6x=30
x=5
меньшая сторона равна 5
а большая следовательно 10
4)у параллелограма противоположные стороны параллельны!
нам дана биссектриса KE которая является секущей
MN и KP из чего следует что угол МЕK = углу EKP как накрест лежащие углы. Из чего следует треугольник KME равнобедренный, а по условию нам дана сторона KM =8 значит МЕ тоже равна 8
значит большая сторона параллелограма = МЕ + ЕN = 8+4=12
найдем периметр = 12×2 + 8×2=40