Начнём с верхнего квадрата с площадью 17(ед²) - найдём вторую его сторону: 17÷5=3,4 - вторая сторона фигуры. Общая длина стороны фигур с площадью 60 и 17 составляет 9, тогда длина фигуры площадью 60(ед²) равна: 9–3,4=5,6. Сложим площади 60 + 52=112(ед²) - общая площадь площадей 60 и 52. У фигуры с этой площадью ширина 5,6, которую мы нашли, тогда длина этого прямоугольника=112÷5,6=20. Эта длина является самой большой, включая в себя длину 5 и 10. Теперь найдём неизвестную длину:
Дано четырехугольник ABCD с вершинами в точках A (1 , - 5) , B (2 , 3) , C (- 3 , 1) , D (- 4 , - 7) и нам нужно доказать , что это четырехугольник является параллелограммом .
Мы доказываем с свойству четырехугольника . Знаем , если координаты середин отрезков AC и BD совпадают , то это четырехугольник ABCD является параллелограммом .
Найдём середин отрезков AC и BD :
а) A (1 , - 5) ; C (- 3 , 1) :
x = (1 - 3)/2 = - 1 ; y = (- 5 + 1)/2 = - 2 .
б) B (2 , 3) и D (- 4 , - 7) :
x = (2 - 4)/2 = - 1 ; y = (3 - 7)/2 = - 2 .
Видно координаты середин одинаковы , значит , четырехугольник ABCD является параллелограммом .
ответ : Четырехугольник ABCD является параллелограммом .
неизвестная длина=5
Объяснение:
Начнём с верхнего квадрата с площадью 17(ед²) - найдём вторую его сторону: 17÷5=3,4 - вторая сторона фигуры. Общая длина стороны фигур с площадью 60 и 17 составляет 9, тогда длина фигуры площадью 60(ед²) равна: 9–3,4=5,6. Сложим площади 60 + 52=112(ед²) - общая площадь площадей 60 и 52. У фигуры с этой площадью ширина 5,6, которую мы нашли, тогда длина этого прямоугольника=112÷5,6=20. Эта длина является самой большой, включая в себя длину 5 и 10. Теперь найдём неизвестную длину:
20–5–10=5
Дано четырехугольник ABCD с вершинами в точках A (1 , - 5) , B (2 , 3) , C (- 3 , 1) , D (- 4 , - 7) и нам нужно доказать , что это четырехугольник является параллелограммом .
Мы доказываем с свойству четырехугольника . Знаем , если координаты середин отрезков AC и BD совпадают , то это четырехугольник ABCD является параллелограммом .
Найдём середин отрезков AC и BD :
а) A (1 , - 5) ; C (- 3 , 1) :
x = (1 - 3)/2 = - 1 ; y = (- 5 + 1)/2 = - 2 .
б) B (2 , 3) и D (- 4 , - 7) :
x = (2 - 4)/2 = - 1 ; y = (3 - 7)/2 = - 2 .
Видно координаты середин одинаковы , значит , четырехугольник ABCD является параллелограммом .
ответ : Четырехугольник ABCD является параллелограммом .