В равнобедренном треугольнике действительно равны углы при основании. Это утверждение верно.
ответ: утверждение 1 верно.
Медианы треугольника пересекаются в одной точке - в центроиде (в центре тяжести треугольника). Она является одной из замечательных точек треугольника. Это утверждение верно.
ответ: утверждение 2 верно.
Медиана произвольного равнобедренного треугольника, проведённая к ОСНОВАНИЮ, а не к боковой стороне, является его биссектрисой и высотой. Это утверждение неверно.
ответ: утверждение 3 неверно.
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны. Это один из признаков равенства треугольников. Это утверждение верно.
Объяснение:
Проанализируем каждое утверждение.
В равнобедренном треугольнике действительно равны углы при основании. Это утверждение верно.
ответ: утверждение 1 верно.
Медианы треугольника пересекаются в одной точке - в центроиде (в центре тяжести треугольника). Она является одной из замечательных точек треугольника. Это утверждение верно.
ответ: утверждение 2 верно.
Медиана произвольного равнобедренного треугольника, проведённая к ОСНОВАНИЮ, а не к боковой стороне, является его биссектрисой и высотой. Это утверждение неверно.
ответ: утверждение 3 неверно.
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны. Это один из признаков равенства треугольников. Это утверждение верно.
ответ: утверждение 4 верно.
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение: