▪в треугольрике АВС: угол А = 20° ( 180-90-70=20°)
▪СМ = ВМ = АМ (как медиана проведенная из прямого угла к гиппотенузе)
▪треугольник СМА равнобедренный, значит углы при основании равны, т.е. угол МАС = углу МСА = 20°
ответ: угол МСА = 20°
2)
▪треугольник ВДС равнобедренный, значит углы при основании равны, т.е. угол ДСВ = углу ДВС = 25°
▪в треугольрике ВДС:
угол ВДС = 180-25-25=130°
▪угол ВДС + угол ВДА = 180° (это смежные углы)
угол ВДА = 180 - 130 = 50°
▪треугольник ВДА равнобедренный, значит углы при основании равны:
угол ДАВ = углу ДВА = (180 - 50) ÷ 2 = 65°
▪треугольник АВС:
угол АВС = 180 - 25 - 65 = 90°
решения:
▪в треугольнике АВС:
ВД медиана проведенная из угла В к стороне АС , а также ВД равна половине стороны АС, т.е. ВД = СД = АД , значит треугольрик АВС прямоугольный и уоол АВС = 90°
1) В правильной треугольной пирамиде проекция бокового ребра на основание равна 2/3 высоты основания h и равна радиусу R описанной окружности около основания.
1)
▪в треугольрике АВС: угол А = 20° ( 180-90-70=20°)
▪СМ = ВМ = АМ (как медиана проведенная из прямого угла к гиппотенузе)
▪треугольник СМА равнобедренный, значит углы при основании равны, т.е. угол МАС = углу МСА = 20°
ответ: угол МСА = 20°
2)
▪треугольник ВДС равнобедренный, значит углы при основании равны, т.е. угол ДСВ = углу ДВС = 25°
▪в треугольрике ВДС:
угол ВДС = 180-25-25=130°
▪угол ВДС + угол ВДА = 180° (это смежные углы)
угол ВДА = 180 - 130 = 50°
▪треугольник ВДА равнобедренный, значит углы при основании равны:
угол ДАВ = углу ДВА = (180 - 50) ÷ 2 = 65°
▪треугольник АВС:
угол АВС = 180 - 25 - 65 = 90°
решения:
▪в треугольнике АВС:
ВД медиана проведенная из угла В к стороне АС , а также ВД равна половине стороны АС, т.е. ВД = СД = АД , значит треугольрик АВС прямоугольный и уоол АВС = 90°
▪угол А = 180 - 90 - 25 = 65°
ответ: угол А = 65° ; угол АВС = 90°
3) не знаю решения
1) В правильной треугольной пирамиде проекция бокового ребра на основание равна 2/3 высоты основания h и равна радиусу R описанной окружности около основания.
h = a*cos 30° = 6*(√3/2) = 3√3 см.
R = (2/3)h = (2/3)*(3√3) = 2√3 см.
Отсюда получаем ответ:
β = arc tg(H/R) = arc tg(4/2√3) = 0,8571 радиан или 49,1066 градуса.
2) В правильной треугольной пирамиде проекция апофемы на основание равна 1/3 высоты основания h и равна радиусу r вписанной окружности в основание.
h = a*cos 30° = 6*(√3/2) = 3√3 см.
r = (1/3)h = (1/3)*(3√3) = √3 см.
Отсюда получаем ответ:
α = arc tg(H/r) = arc tg(4/√3) = 1,16216 радиан или 66,58678 градуса.
3) So = a²√3/4 = 36√3/4 = 9√3 см².
Периметр Р = 3а = 3*6 = 18 см.
Апофема А = √(Н² + r²) = √(36 + 3) = √39 см.
Sбок = (1/2)РА = (1/2)*18*√39 = 9√39 см².
S = So + Sбок = 9√3 + 9√39 = 9(√3 + √39) см².