У гострокутних трикутниках ABC i A1,B1,C1, провели висоти AH i A1H1,. Доведіть, що коли AB = A1B1, CH = C1H1, і кут CHА= кут C1H1A1, то АВС = А1B1C1.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
1) Вычислить сумму углов n=угольник n=4
Решение: Сумма углов n-угольника равна
x = (n-2)•180°
n = 4 => x = 2×180 = 360°
ответ: 360°
2 в выпуклом шестиугольнике все углы между собой равны: Найдите эти углы
Решение: n = 6 Сумма углов равна
(6-2)•180 = 720°
Значит каждый угол равен
720÷6 = 120°
ответ: 120°
3 Существует выпуклый многоугольник у которого сумма углов равна 1080? если так найти количество сторон
Решение: Сумма углов равна 1080
(n-2)•180 = 1080°
n-2 = 1080÷180 = 9
n = 9+2 = 11
Кол-во углов и сторон у многоугольников равно.
ответ: 11 сторон
4 Найти площадь квадрата сторона которого равна 0.5см
ответ 1/4 см² или 0,25 см²
5 Найти сторону квадрата, площадь которого равна 1,44см^2
ответ: 1,2 см
6 Найти площадь квадрата,если его диагональ равна 4*√2см
ответ: 16 см²
7 Найти площадь прямоугольника с сторонами √3см и √27 см
S = ✓3 • ✓27 = ✓81 = 9
ответ: 9 см²
8 Найти площадь прямоугольника если одна из сторон равна 12см, а диагональ 13см
S = a•b = 12•5 = 60 см²
ответ: 60 см²
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).