Боковое ребро AA1 образует со сторонами основания AB и AD равные углы 60.
Возьмем на ребре AA1 точку T и опустим перпендикуляры на стороны: TK⊥AB, TN⊥AD
△TAK=△TAN по гипотенузе и острому углу => AK=AN
Опустим перпендикуляр TH на плоскость основания.
По теореме о трех перпендикулярах HK⊥AB, HN⊥AD
AKHN - квадрат
Диагональ AH квадрата AKHN лежит на диагонали AC квадрата основания. Перпендикуляр из T падает на AC, следовательно перпендикуляр из A1 - высота призмы - также падает на AC.
Пусть AN=1, тогда AT=AN/cos60=2, AH=AN/cos45=√2
=> cosTAH =AH/AT =√2/2 => ∠TAH=45 =∠A1AC
Диагональное сечение AA1C1C содержит высоту, следовательно перпендикулярно основанию.
S(AA1C1C) =AC*h (h - высота из A1)
32 =4√2*h => h =4√2
(Поскольку высота из A1 образует с вершиной A треугольник c углами 45, 90 - равнобедренный - видим, что она падает в точку С.)
AA1 =h/sin45 =4√2*√2 =8 =BB1
AC⊥BD (диагонали квадрата) => AA1⊥BD (т о трех перпендикулярах)
Высота равностороннего треугольника равна 25√3. Найдите его периметр.
Решение:
1) Так как треугольник равносторонний, то ∠A = ∠B = ∠C = 180° : 3 = 60°.
2) Рассмотрим треугольник ABH (∠H = 90)
∠B = 180° - 90° - 60° = 30°
3) AH = половине AB = AB/2 - Катет, лежащий против угла в 30°.
AB2 = (25√3)2 + (AB/2)2
AB2 = 1875 + AB2/4
AB2 - AB2/4= 1875
(3AB2)/4 = 1875
Крест-накрест:
3AB2 = 4 * 1875
3AB2 = 7500
AB2 = 7500 / 3
AB2 = 2500
AB = √2500
AB = 50
4) Периметр равен сумме всех сторон, так как треугольник имеет 3 стороны и в данном случа они все равны, то:
P = 50 + 50 + 50 = 150
ответ: 150
Боковое ребро AA1 образует со сторонами основания AB и AD равные углы 60.
Возьмем на ребре AA1 точку T и опустим перпендикуляры на стороны: TK⊥AB, TN⊥AD
△TAK=△TAN по гипотенузе и острому углу => AK=AN
Опустим перпендикуляр TH на плоскость основания.
По теореме о трех перпендикулярах HK⊥AB, HN⊥AD
AKHN - квадрат
Диагональ AH квадрата AKHN лежит на диагонали AC квадрата основания. Перпендикуляр из T падает на AC, следовательно перпендикуляр из A1 - высота призмы - также падает на AC.
Пусть AN=1, тогда AT=AN/cos60=2, AH=AN/cos45=√2
=> cosTAH =AH/AT =√2/2 => ∠TAH=45 =∠A1AC
Диагональное сечение AA1C1C содержит высоту, следовательно перпендикулярно основанию.
S(AA1C1C) =AC*h (h - высота из A1)
32 =4√2*h => h =4√2
(Поскольку высота из A1 образует с вершиной A треугольник c углами 45, 90 - равнобедренный - видим, что она падает в точку С.)
AA1 =h/sin45 =4√2*√2 =8 =BB1
AC⊥BD (диагонали квадрата) => AA1⊥BD (т о трех перпендикулярах)
=> BB1⊥BD, BB1D1D - прямоугольник
S(BB1D1D) =BB1*BD =8*4√2 =32√2 (см^2)