Поскольку пирамида правильная, то BH - медиана, биссектриса и высота треугольника ABC, то есть верно, что . Проведем прямую . Тогда . Пусть CP другая медиана треугольника ABC. Пусть медианы этого треугольника пересекаются в точке O. Тогда из-за того, что пирамида правильная, SO - это ее высота, т.е. , а значит и любой прямой в этой плоскости. Пусть . Проведем через точку J прямую параллельную SO, которая пересечет SC в точке I. Тогда , а значит и любой прямой в этой плоскости. Соединим точки M, I и E. Получим плоскость . Покажем, что . и , и . Тогда задача сводится к нахождению площади треугольника . Будем искать ее, как . Из подобия треугольников следует, что . Из подобия треугольников . Подставив найденное в формулу выше, получим . Таким нами образом было получено, что искомая площадь равна .
Пусть один из смежных углов х градусов, тогда второй из смежных углов 3×х градусов. Нам известно, что сумма градусных мер смежных углов равна 180 градусов. Составляем уравнение:
х + 3 × х = 180;
х × (1 + 3) = 180;
х × 4 = 180 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
(см. объяснение)
Объяснение:
Поскольку пирамида правильная, то BH - медиана, биссектриса и высота треугольника ABC, то есть верно, что . Проведем прямую . Тогда . Пусть CP другая медиана треугольника ABC. Пусть медианы этого треугольника пересекаются в точке O. Тогда из-за того, что пирамида правильная, SO - это ее высота, т.е. , а значит и любой прямой в этой плоскости. Пусть . Проведем через точку J прямую параллельную SO, которая пересечет SC в точке I. Тогда , а значит и любой прямой в этой плоскости. Соединим точки M, I и E. Получим плоскость . Покажем, что . и , и . Тогда задача сводится к нахождению площади треугольника . Будем искать ее, как . Из подобия треугольников следует, что . Из подобия треугольников . Подставив найденное в формулу выше, получим . Таким нами образом было получено, что искомая площадь равна .
Задание выполнено!
Объяснение:
Решим данную задачу при уравнения.
Пусть один из смежных углов х градусов, тогда второй из смежных углов 3×х градусов. Нам известно, что сумма градусных мер смежных углов равна 180 градусов. Составляем уравнение:
х + 3 × х = 180;
х × (1 + 3) = 180;
х × 4 = 180 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 180 : 4;
х = 45 градусов — один из смежных углов;
45 × 3 = 135 градусов — второй из смежных углов.
ответ: 45 и 135 градусов.