Если две параллельные прямые пересечены секущей, накрест лежащие углы равны. Если две параллельные прямые пересечены секущей, то соответственные углы равны. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство
1. Пусть параллельные прямые a и b пересечены секущей MN (c). Докажем, что накрест лежащие углы 3 и 6 равны. Допустим, что углы 3 и 6 не равны. Отложим от луча MN угол PMN, равный углу 6, так, чтобы угол PMN и угол 6 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы выяснили, что через точку М проходят две прямые (прямые a и МР), параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 3 равен углу 6
Если две параллельные прямые пересечены секущей, то соответственные углы равны.
Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство
1. Пусть параллельные прямые a и b пересечены секущей MN (c). Докажем, что накрест лежащие углы 3 и 6 равны. Допустим, что углы 3 и 6 не равны. Отложим от луча MN угол PMN, равный углу 6, так, чтобы угол PMN и угол 6 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы выяснили, что через точку М проходят две прямые (прямые a и МР), параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 3 равен углу 6
1) ∠ABC=∠ABD, BC=BD
△ABC=△ABD (по двум сторонам и углу между ними, AB - общая сторона)
2) ∠NMK=∠PKM, NM=PK
△NMK=△PKM (по двум сторонам и углу между ними, MK - общая)
3) RO=TO, OS=OP
∠ROS=∠TOP (вертикальные углы)
△ROS=△TOP (по двум сторонам и углу между ними)
4) ∠E=∠N, EO=NO
∠EOF=∠NOM (вертикальные углы)
△EOF=△NOM (по стороне и прилежащим к ней углам)
5) ∠Q=∠F, QM=PM
∠QMK=∠PMF (вертикальные углы)
△QMK=△PMF (по стороне и прилежащим к ней углам)
6) ∠BAC=∠DCA, ∠ACB=∠CAD
△BAC=△DCA (по стороне и прилежащим к ней углам, AC - общая)
∠B=∠D, BA=DC (соответствующие элементы равных треугольников)
∠BAC-∠CAD=∠DCA-∠ACB <=> ∠BAO=∠DCO
△BAO=△DCO (по стороне и прилежащим к ней углам)
7) EM=FN, ∠EMN=∠FNM
△EMN=△FNM (по двум сторонам и углу между ними, MN - общая)
∠E=∠F, ∠MNE=∠NMF (соответствующие элементы равных треугольников)
∠EMN-∠NMF=∠FNM-∠MNE <=> ∠EMP=∠FNP
△EMP=△FNP (по стороне и прилежащим к ней углам)
8) AB=AD, BC=DC
△ABC=△ADC (по трем сторонам, AC - общая
Объяснение: