Треугольники ABC и PQR равны Сравните: 1) стороны треугольника ABC. 2) стороны и углы треугольника pqr если угол А равен углу B меньше угла А и PQ меньше QR
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.