Треугольники АВ1В и АА1В прямоугольные с общей гипотенузой АВ, значит оба они вписаны в одну окружность с диаметром АВ. Точка О - центр окружности. АО=ВО=АВ/2=4/2=2. В тр-ке АА1В1 ОА1=ОВ1=R=2. По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2. ∠А1ОВ1=arccos(-1/2)=120°. Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит: ∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ.
рисуем прямоугольный треугольник abc.
называем его с угла равным 90 градусам, тоесть угол a будет равен 90 градусам и верхний угол b а нижний правый c.
из угла a проводим высоту к стороне bc.
у нас получается два треугольника abh и ahc.
пусть cah будет равен 50 градусам (по условию).
значит из 90* - 50* = 40* - угол bah.
ah - высота
угол bah = 40*, следовательно
угол b равен b=180*-(40*+90*) = 50*
рассмотрим: треугольник abc-прямоугольный.
угол a=90*
угол b=50*, то угол c=180*-(90*+50*)=40*
подробнее - на -
Точка О - центр окружности. АО=ВО=АВ/2=4/2=2.
В тр-ке АА1В1 ОА1=ОВ1=R=2.
По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2.
∠А1ОВ1=arccos(-1/2)=120°.
Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит:
∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ.