В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
а) Чтобы точка B была симметрична точке A относительно оси x, необходимо заменить координату y точки A на противоположное число, а координату x оставить точно такой же, значит a = 4; b = 3.
б) Чтобы точка B была симметрична точке A относительно оси y, необходимо заменить координату x точки A на противоположное число, а координат y оставить точно такой же, значит a = -4; b = -3.
в) Чтобы точка B была симметрична точке A относительно начала координат, необходимо заменить координаты y и x точки A на противоположные числа, значит a = -4; b = 3.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.
а) Чтобы точка B была симметрична точке A относительно оси x, необходимо заменить координату y точки A на противоположное число, а координату x оставить точно такой же, значит a = 4; b = 3.
б) Чтобы точка B была симметрична точке A относительно оси y, необходимо заменить координату x точки A на противоположное число, а координат y оставить точно такой же, значит a = -4; b = -3.
в) Чтобы точка B была симметрична точке A относительно начала координат, необходимо заменить координаты y и x точки A на противоположные числа, значит a = -4; b = 3.