Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Объяснение:
1.
<2=180-54=126
2.
Внешний угол треугольника равен сумме двух оставшихся углов не смежных с этим внешним углом
123=<В+<К(внутр)
123=67+<К
<К=123-67
<К=56
Внешний <К=180-56=124
3.
<А:<В:<С=2:3:5
<А=2х
<В=3х
<С=5х
Сумма углов треугольника равен 180
<А+<В+<С=180
2х+3х+5х=180
10х=180
Х=18
<А=2×18=36
<В=3×18=54
<С=5×18=90
а) треугольник прямоугольный
б) В треугольнике против большого угла лежит большая сторона
А<В<С
ВС<АС<АВ
Длинная сторона АВ
4.
a основание
b боковая сторона
Треугольник равнобедренный
Боковые стороны равны
Если а=3,5, то
b=8,3
ответ : 3,5 ; 8,3 ; 8,3
Если а=8,3, то
b=3,5
ответ : 8,3 ; 3,5 ; 3,5, но такого тр-ка не существует, так как в треугольнике сумма двух сторон не может быть меньше третьей
3,5+3,5<8,3
5.
<В=180-(<С+<А)=180-(90+60)=30
Катет лежащий против угла 30 равен половине гипотенузе
СМ=ВС:2=7,5:2=3,75
6.
<АВМ=х
<СВМ=х+52
Х+х+52+72=180
2х=56
Х=28
<АВМ=28
<А=<АВМ=28 как накрест лежащие
<В=180-<А-<С=180-28-72=80
ответ <А=28 <В=80 <С=72
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см