В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия

только хотя бы 2,3,4,5,6 отдаю все оставшиеся чтобы решили и с ообяснением. какие вы формулы использовали?


только хотя бы 2,3,4,5,6 отдаю все оставшиеся чтобы решили и с ообяснением. какие вы формулы использ

Показать ответ
Ответ:
Дарьяпоможет
Дарьяпоможет
09.06.2022 22:25

Отрезки касательных к окружности, проведённых из одной точки, не лежащей на окружности, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. ⇒

∠САВ=∠КАВ=60°:2=30°

∠АСВ=∠АКВ=90°- опираются на диаметр АВ. 

Прямоугольные ∆ АСВ=∆ АКВ по острому углу при А и общей гипотенузе АВ. ⇒

АС=AK=АВ•cos30°=2R*√3:2=R√3

           * * * 

Как вариант -  СВ противолежит углу 30° и равен R, можно  применить т.Пифагора,

или провести радиус ОС и находить АС из равнобедренного ∆ АОС по т.косинусов.


Две окружности касаются внутренне в точке в, ав- диаметр большей окружности. через точку а проведены
0,0(0 оценок)
Ответ:
yakov228
yakov228
17.01.2023 02:20

В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. 
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. 
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. 
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота