Параллельные плоскости α и β пересекают сторону КА угла ВКА соответственно в точках А₁ и А₂ , а сторону КВ этого угла -соответственно в точках В₁ и В₂. Найдите КА₂, ВА₂ если А₁А₂=3КА₁ , КВ₁:В₂В₃=1:3 , А₁А₂=18 см, КВ₁=6 см.
Объяснение:
Тк α║β , то плоскость (КА₂В₂) пересекает α и β по параллельным прямым ⇒А₁В₁║А₂В₂.
⇒ КА₂=4*КА₁. КВ₁:В₂В₃=1:3 ⇒ КВ₂=4*КВ₁ .
ΔКА1В1~ΔКА2В2 по 2-м угла : ∠К общий , ∠КА1В1=∠КА2В2 как соответственные при А₁В₁║А₂В₂, КА₂- секущая. Значит сходственные стороны пропорциональны. А т.к. на А₁А₂ приходится три части , по условию, или 18 см , то на одну часть приходится 6см ⇒
КА₂=4*6=24 (см)
На КВ₂ приходится 1+3=4 части. По условию КВ₁=6см ⇒
Итак, если построить чертеж, то мы получим тетраэдр, в основании которого лежит правильный треугольник ABC со стороной 2 корня из 3! И высотой SH=корень из 5!Так как т. S равноудалена от каждой стороны то боковые треугольники в тетраэдре-равнобедренные, а значит SH делит сторону AC на две равные части: AH=HC=(2 корня из 3)/2! Прямая MH является стедней линией треугольника ABC, а значит высота SO падает ровно на середину этой прямой! А как известно средняя линия в треугольнике равнв половине той стороны , к которой она параллельна, а тоесть равна (2 корня из 3)/2! А OH тогда равно (2 корня из 3)/4! Остается только найти катет SO в прямоугольном треугольнике SOH! По теореме пифагора SH^2=SO^2+OH^2 => SO=корень из (SH^2-OH^2) ! Получим что SO=(корень из 17)/2!
Параллельные плоскости α и β пересекают сторону КА угла ВКА соответственно в точках А₁ и А₂ , а сторону КВ этого угла -соответственно в точках В₁ и В₂. Найдите КА₂, ВА₂ если А₁А₂=3КА₁ , КВ₁:В₂В₃=1:3 , А₁А₂=18 см, КВ₁=6 см.
Объяснение:
Тк α║β , то плоскость (КА₂В₂) пересекает α и β по параллельным прямым ⇒А₁В₁║А₂В₂.
⇒ КА₂=4*КА₁. КВ₁:В₂В₃=1:3 ⇒ КВ₂=4*КВ₁ .
ΔКА1В1~ΔКА2В2 по 2-м угла : ∠К общий , ∠КА1В1=∠КА2В2 как соответственные при А₁В₁║А₂В₂, КА₂- секущая. Значит сходственные стороны пропорциональны. А т.к. на А₁А₂ приходится три части , по условию, или 18 см , то на одну часть приходится 6см ⇒
КА₂=4*6=24 (см)
На КВ₂ приходится 1+3=4 части. По условию КВ₁=6см ⇒
КВ₂=4*6=24 см.
Итак, если построить чертеж, то мы получим тетраэдр, в основании которого лежит правильный треугольник ABC со стороной 2 корня из 3! И высотой SH=корень из 5!Так как т. S равноудалена от каждой стороны то боковые треугольники в тетраэдре-равнобедренные, а значит SH делит сторону AC на две равные части: AH=HC=(2 корня из 3)/2! Прямая MH является стедней линией треугольника ABC, а значит высота SO падает ровно на середину этой прямой! А как известно средняя линия в треугольнике равнв половине той стороны , к которой она параллельна, а тоесть равна (2 корня из 3)/2! А OH тогда равно (2 корня из 3)/4! Остается только найти катет SO в прямоугольном треугольнике SOH! По теореме пифагора SH^2=SO^2+OH^2 => SO=корень из (SH^2-OH^2) ! Получим что SO=(корень из 17)/2!
ответ:(корень из 17)/2