По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
Ок, я попробую)
17
CAO = OBD по 2 сторонам и углу между ними
18
ECB = BCA по 3 сторонам
DCA = CAB по 2 углам и стороне между ними
19 (А я уже устала)
SQ = TR т.к. PS = PT
тоже самое с углами PSM=QSM и PTM=RTM
ТА, И СТОРОНЫ SM=MT и вот по 2 сторонам и углу меду ними
20
(*Я устала писать названия треуг, поэтому где очевидно, буду просто писать просто как они равны*)
По двум сторонам и углу меду ними(одной из сторон считается вот эта палка по середине(Да я физмат))
21
По двум сторонам и углу меду ними
22(так дело пошло быстрее)
По двум углам и стороне меду ними (Если углы снаружи равны, то внутри они тоже будут равны)
23
По двум сторонам и углу меду ними (опять эта палка)
24
По двум сторонам и углу меду ними