Точки t и p - соответственно середины сторон ab и ac треугольника abc. в треугольник atp вписана окружность, длина радиуса которой равна 2 см. вычислите площадь треугольника atp.
Свойство треугольника: Любая сторона треугольника меньше суммы двух других сторон и больше их разности: ( a < b + c,.. a > b – c;.. b < a + c,.. b > a – c; .. c < a + b,.. c > a – b )
Одна из сторон треугольника в два раза больше другой означает, что основание в этом треугольнике является меньшей стороной. В противном случае длина основания была бы равна сумме боковых сторон, и такой треугольник получится "вырожденным". Пусть основание равно х, тогда каждая боковая сторона 2х Периметр равен 2х+2х+х=5х х=55:5=11 см. ( основание) 11*2=22 см - каждая боковая сторона.
Сириус курсы. Геометрия. 9 класс. v1.4. Радикальные оси. Задача №5.
1. Чертим 2 пересекающиеся прямые. Т.к прямые бесконечны, то их можно чертить в любых масштабах. Начертим , маленькие.
2.Отмечаем точки на них, подписываем цифрами длину отрезков.
3. Как известно из видео, которое ты невнимательно смотрела, длины если произведения отрезков, находящихся на одной прямой и имеющих общую точку соответственно равно произведению отрезков, находящихся на второй прямой, то эти отрезки лежат на одной окружности, а значит и точки, которыми соединяются отрезки лежат на этой окружности.
4. Перебираем варианты: ( О - общая точка пересечения нужных отрезков)
1. AO*OB = OD* OE
2. AO*OC = OG*OD
Следовательно подходят варианты:
ADBE, ADCG.
P.S. Курсы созданы, чтобы там стараться и додумывать самим)
Любая сторона треугольника меньше суммы двух других сторон и больше их разности:
( a < b + c,.. a > b – c;.. b < a + c,.. b > a – c; .. c < a + b,.. c > a – b )
Одна из сторон треугольника в два раза больше другой означает, что основание в этом треугольнике является меньшей стороной. В противном случае длина основания была бы равна сумме боковых сторон, и такой треугольник получится "вырожденным".
Пусть основание равно х, тогда каждая боковая сторона 2х
Периметр равен 2х+2х+х=5х
х=55:5=11 см. ( основание)
11*2=22 см - каждая боковая сторона.
ADBE, ADCG
Объяснение:
Сириус курсы. Геометрия. 9 класс. v1.4. Радикальные оси. Задача №5.
1. Чертим 2 пересекающиеся прямые. Т.к прямые бесконечны, то их можно чертить в любых масштабах. Начертим , маленькие.
2.Отмечаем точки на них, подписываем цифрами длину отрезков.
3. Как известно из видео, которое ты невнимательно смотрела, длины если произведения отрезков, находящихся на одной прямой и имеющих общую точку соответственно равно произведению отрезков, находящихся на второй прямой, то эти отрезки лежат на одной окружности, а значит и точки, которыми соединяются отрезки лежат на этой окружности.
4. Перебираем варианты: ( О - общая точка пересечения нужных отрезков)
1. AO*OB = OD* OE
2. AO*OC = OG*OD
Следовательно подходят варианты:
ADBE, ADCG.
P.S. Курсы созданы, чтобы там стараться и додумывать самим)