Точки N(3;-1) и M(-4;3) являются серединами сторон АВ, ВС треугольника АВС. Известно, что А(5;3), найдите координаты вершин В и С, а также длину стороны MN.
Объяснение: Первое выражение с учетом третьего <2 + <3 - <4 =<2 + <3 - <1 = 30 °. Это последнее выражение с учетом второго<2 + <3 - <1 =<2 + <2 - <1 = 2<2 - <1 =30 °.
С учетом второго и третьего выражений, четвертое выражение примет вид:
<1 + <2 + <3 + <4 = <1 + <2 + <2 + <1 = 2<1 + 2<2 = 360 °. Таким образом, имеем систему двух уравнений с двумя неизвестными: а)2<2 - <1 =30° и б)2<1 + 2<2 = 360°.
Из а) 2<2 = 30° + <1 Подставим значение 2<2 в б) имеем: 2<1 + 30° + <1 = 360°, или 3<1 = 360° - 30° = 330° . Отсюда <1 = 330°/3 = 110°
ответ: <1 = 110°
Объяснение: Первое выражение с учетом третьего <2 + <3 - <4 =<2 + <3 - <1 = 30 °. Это последнее выражение с учетом второго<2 + <3 - <1 =<2 + <2 - <1 = 2<2 - <1 =30 °.
С учетом второго и третьего выражений, четвертое выражение примет вид:
<1 + <2 + <3 + <4 = <1 + <2 + <2 + <1 = 2<1 + 2<2 = 360 °. Таким образом, имеем систему двух уравнений с двумя неизвестными: а)2<2 - <1 =30° и б)2<1 + 2<2 = 360°.
Из а) 2<2 = 30° + <1 Подставим значение 2<2 в б) имеем: 2<1 + 30° + <1 = 360°, или 3<1 = 360° - 30° = 330° . Отсюда <1 = 330°/3 = 110°
Объяснение:
7)
ВD=AB√2=4√2 ед.
ВО=R=BD/2=4√2/2=2√2 ед.
S(ABCD)=AB²=4²=16 ед²
Sкр=πR²=BO²*π=(2√2)²π=8π ед².
Sз.ф.=S(ABCD)-Sкр=16-8π
ответ: 16-8π ед²
Обозначение: Sкр-площадь круга; Sз.ф.-площадь закращенной фигуры.
8)
S(ABCD)=AB*BC=2*6=12 ед²
R=BA/2=2/2=1ед радиус полукруга
Sп.кр.=πR²/2=1²π/2=π/2 ед² площадь полукруга
r=1ед, по условию радиус четвертой части круга.
Sч.кр=πr²/4=1²π/4=π/4 ед² площадь 1/4 круга
Sз.ф.=S(ABCD)-Sп.кр-Sч.кр=12-π/2-π/4=
=12-(π/2+π/4)=12-(2π/4+π/4)=12-3π/4=
=48/4-3π/4=(48-3π)/4 ед²
ответ: (48-3π)/4 ед²
Обозначение:
Sп.кр- площадь полукруга
Sч.кр- площадь части круга (1/4)
Sз.ф- площадь закрашенной части.
9)
АВ=2r=2*2=4ед.
S(ABCD)=AB²=4²=16 ед²
Sкр=πr²=π*2²=4π ед²
Sз.ф.=S(ABCD)-Sкр=16-4π ед²
ответ: 16-4π ед²
10)
S(ABCD)=AB*BC=12*5=60 ед²
∆АВD- прямоугольный треугольник
По теореме Пифагора
ВD=√(AB²+AD²)=√(5²+12²)=13 ед.
R=(AB+AD-BD)/2=(12+5-13)/2=4/2=2 ед.
Sкр=πR²=2²π=4π ед²
r=3ед, по условию.
Sч.кр=πr²/4=3²π/4=9π/4=2,25π ед²
Sз.ф=S(ABCD)-Sкр-Sч.кр=60-4π-2,25π=
=60-6,25π ед²
ответ: 60-6,25π ед²