Точки M и N —середины рёбер соответственно АА1 и AB треугольной призмы ABCA1B1C1. а) По-стройте сечение призмы плоскостью, проходящей через точки M, N и С1. б) В каком отношении плоскость сечения делит ребро BC?
две точки этой прямой равноудалены от концов хорды. Поэтому эта прямая является препендикуляром, проходящим через центр хорды (поскольку ВСЕ точки, равноудаленные от концов, лежат на этом перпендикуляре).
На самом деле тут часто бывают методические противоречия. Дело в том, что когда я учился, нам уже в 5 классе объясняли, что "геометрическое место точек, равноудаленых от концов отрезка есть прямая, перпендикулярная отрезку и проходящая через его середину". Прямая в задаче совпадает с такой прямой в 2 точках, то есть совпадает везде. Поэтому доказательство абсолютно точное и простейшее. Но сам термин "геометрическое место точек" может быть не знаком. На самом деле это просто НАБОР ТОЧЕК С ЗАДАННЫМ СВОЙСТВОМ. :)))
Если рассмотреть треугольник SOC где О - центр основания, этот треугольник лежит в плоскости ACF, то ОС = (1/2)*SO это задано в условии. Обозначим ОС как х.
Если провести в треугольнике SOC (очень рекомендую сейчас нарисовать плоский чертеж этого треугольника) через точку F прямую II ОС до пересечения с SO (обозначим точку пересечения с SO как Р), то FP = x*3/4; PO = (1/4)*(2*x) = x/2;
Поскольку BO перпендикулярно плоскости ACF (в этой плоскости есть 2 прямые, заведомо перпендикулярнные ВО - это AC и SO), то котангенс искомого угла равен ОF/BO, а ВО = х. Отсюда сразу ответ
две точки этой прямой равноудалены от концов хорды. Поэтому эта прямая является препендикуляром, проходящим через центр хорды (поскольку ВСЕ точки, равноудаленные от концов, лежат на этом перпендикуляре).
На самом деле тут часто бывают методические противоречия. Дело в том, что когда я учился, нам уже в 5 классе объясняли, что "геометрическое место точек, равноудаленых от концов отрезка есть прямая, перпендикулярная отрезку и проходящая через его середину". Прямая в задаче совпадает с такой прямой в 2 точках, то есть совпадает везде. Поэтому доказательство абсолютно точное и простейшее. Но сам термин "геометрическое место точек" может быть не знаком. На самом деле это просто НАБОР ТОЧЕК С ЗАДАННЫМ СВОЙСТВОМ. :)))
Если рассмотреть треугольник SOC где О - центр основания, этот треугольник лежит в плоскости ACF, то ОС = (1/2)*SO это задано в условии. Обозначим ОС как х.
Если провести в треугольнике SOC (очень рекомендую сейчас нарисовать плоский чертеж этого треугольника) через точку F прямую II ОС до пересечения с SO (обозначим точку пересечения с SO как Р), то FP = x*3/4; PO = (1/4)*(2*x) = x/2;
Отсюда по теореме Пифагора находим ОF = корень((x*3/4)^2 + (x/2)^2) =
= х*корень(13)/4;
Поскольку BO перпендикулярно плоскости ACF (в этой плоскости есть 2 прямые, заведомо перпендикулярнные ВО - это AC и SO), то котангенс искомого угла равен ОF/BO, а ВО = х. Отсюда сразу ответ
корень(13)/4