Смотри, из теоремы о сумме углов треугольника мы знаем, что сумма трех углов всегда равна 180. Отсюда можно сделать вывод, что не существует треугольника, в котором больше одного тупого угла (градусная мера больше 90) (например, угол 1-100 градусов, 2-95, 3-10, следовательно, 2 тупых угла. Сложим градусные меры всех углов. 100+95+10=205, что противоречит вышесказанной теореме, а значит, такого быть не может), в котором больше одного прямого угла (градусная мера равна 90) (приведу такой же пример: 1-90, 2-90, 3-10: 90+90+10=190, такого треугольника не сущ-ет)
К тому же, в прямоугольном треугольнике из 3 углов один равен 90, а на два других угла также приходится 90 градусов (например, один-30, другой-60/ 20, 70/ 10/80 и т.д.)-это первое свойство прямоугольного треугольника, которое также доказывает, что не может быть 2 прямых угла.
Не могу нарисовать рисунок, но попытаюсь объяснить.
Пусть имеется прямоугольный треугольник ABC с гипотенузой AC и прямым углом при вершине В.
Пусть точка О – пересечение заданных биссектрис. Один из углов при О = 100 градусов
Вариант 1.
Расcмотрим треугольник ABO. Угол AOB=100, угол ABO=45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-100-45=35
Угол BAC вдвое больше BAO и равен 35*2=70.
Оставшийся уголACB =180-90-70=20.
Вариант 2.
(если вдруг возникнет иллюзия считать, что распределение углов при точке О другое – то есть 100 град = угол AOD, где точка В – точка пересечения биссектрисы из вершины B со стороной AC, То в таком случае:
Всё равно рассмотрим треугольник ABO. Только угол AOB=180-100=80. угол ABO всё равно 45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-80-45=55.
Угол BAC в этом случае вдвое больше BAO и равен 55*2=110. И тут упс – сумма двух углов начального прямоугольного треугольника уже становится больше 180, а ведь есть ещё и третий угол. Поэтому распределение углов при точке О только такое, как в первом варианте решения. Второй вариант нежизне
Смотри, из теоремы о сумме углов треугольника мы знаем, что сумма трех углов всегда равна 180. Отсюда можно сделать вывод, что не существует треугольника, в котором больше одного тупого угла (градусная мера больше 90) (например, угол 1-100 градусов, 2-95, 3-10, следовательно, 2 тупых угла. Сложим градусные меры всех углов. 100+95+10=205, что противоречит вышесказанной теореме, а значит, такого быть не может), в котором больше одного прямого угла (градусная мера равна 90) (приведу такой же пример: 1-90, 2-90, 3-10: 90+90+10=190, такого треугольника не сущ-ет)
К тому же, в прямоугольном треугольнике из 3 углов один равен 90, а на два других угла также приходится 90 градусов (например, один-30, другой-60/ 20, 70/ 10/80 и т.д.)-это первое свойство прямоугольного треугольника, которое также доказывает, что не может быть 2 прямых угла.
Не могу нарисовать рисунок, но попытаюсь объяснить.
Пусть имеется прямоугольный треугольник ABC с гипотенузой AC и прямым углом при вершине В.
Пусть точка О – пересечение заданных биссектрис. Один из углов при О = 100 градусов
Вариант 1.
Расcмотрим треугольник ABO. Угол AOB=100, угол ABO=45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-100-45=35
Угол BAC вдвое больше BAO и равен 35*2=70.
Оставшийся уголACB =180-90-70=20.
Вариант 2.
(если вдруг возникнет иллюзия считать, что распределение углов при точке О другое – то есть 100 град = угол AOD, где точка В – точка пересечения биссектрисы из вершины B со стороной AC, То в таком случае:
Всё равно рассмотрим треугольник ABO. Только угол AOB=180-100=80. угол ABO всё равно 45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-80-45=55.
Угол BAC в этом случае вдвое больше BAO и равен 55*2=110. И тут упс – сумма двух углов начального прямоугольного треугольника уже становится больше 180, а ведь есть ещё и третий угол. Поэтому распределение углов при точке О только такое, как в первом варианте решения. Второй вариант нежизне