11. На малюнку 11, ми бачимо що кут MKP = куту NKP. Також МК = КN(сторони). І ще в них є спільна сторона КР.
Відповідь: трикутники МКР і NKP рівні за двома сторонами та кутом між ними, тобто, за першою ознакою рівності трикутників.
12. На малюнку 12, ми бачимо що сторона ВС = стороні АD. А сторона ВА = стороні СD. Також сторона АС у них спільна.
Відповідь: трикутники АВС і АDC рівні за трьома сторонами, тобто за третьою ознакою рівності трикутників.
13. На малюнку 13, можна побачити що кут АСD i BCD — рівні. Також рівні й кути ADC i BDC. Ще спільна сторона CD.
Відповідь: трикутники АСD i DBC рівні за сторонами та двома прилеглими до неї, тобто за другою ознакою рівності трикутників.
16. На малюнку 16 КТ = РТ(рівні сторони). Також сторони МТ і ST рівні. Кут КТМ = куту STP - тому що, вони вертикальні.
Відповідь: трикутники КТМ і STP рівні за двома сторонами та кутом між ними, тобто за першою ознакою рівності трикутників.
Надіюсь правильно)))
∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°
11. На малюнку 11, ми бачимо що кут MKP = куту NKP. Також МК = КN(сторони). І ще в них є спільна сторона КР.
Відповідь: трикутники МКР і NKP рівні за двома сторонами та кутом між ними, тобто, за першою ознакою рівності трикутників.
12. На малюнку 12, ми бачимо що сторона ВС = стороні АD. А сторона ВА = стороні СD. Також сторона АС у них спільна.
Відповідь: трикутники АВС і АDC рівні за трьома сторонами, тобто за третьою ознакою рівності трикутників.
13. На малюнку 13, можна побачити що кут АСD i BCD — рівні. Також рівні й кути ADC i BDC. Ще спільна сторона CD.
Відповідь: трикутники АСD i DBC рівні за сторонами та двома прилеглими до неї, тобто за другою ознакою рівності трикутників.
16. На малюнку 16 КТ = РТ(рівні сторони). Також сторони МТ і ST рівні. Кут КТМ = куту STP - тому що, вони вертикальні.
Відповідь: трикутники КТМ і STP рівні за двома сторонами та кутом між ними, тобто за першою ознакою рівності трикутників.
Надіюсь правильно)))
∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°