Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
задание 1
ответы: 3 4
задание 2
т.к. KP=PM то трк равнобедренный значит PH- медиана биссектриса и высота следовательно угол KPH= углу HPM=21 градус. угол PHK=90 градусов
ответ: угол PHK=90 а угол KPH=21 градус
Задание 3
т.к. AO=OD угол BAO= углу CDO (по усл задачи)
угол AOB=углу DOC(смежные)
то треугольники равны по 2 признаку равенства
Задание 4
по условию задачи ML=MN значит трк MNL равнобедренный MD делит основание тр-ка на две равные половины значит MD биссектриса а биссектриса в равнобедренном тр-ке является и медианой и высотой
Задание 5
диаметры в круге равны значит в точке центра делятся пополам и у нас образуются 2 равнобедренных тр-ка MPN и OPK также у этих тр-ков есть вертикальные углы которые равны угол POK= углу MOH тогда треугольник POK равен тр-ку MON по 1 признаку тогда углы
OMN=OHM=OPK=OKP=40 градусов
Объяснение: