Точки А1, В1, С1 є паралельними проекціями відповідно точок А, В, і С, які лежать на одній прямій (точка В1 лежить між точками А1 і С1). Знайдіть відрізок А1С1, якщо АВ = 10 см, АС = 16 см, В1С1 = 3 см.
1. Он прямоугольный, т.к. квадрат одной стороны равен сумме квадратов двух других.
2. Т.к. АВС равнобедренный, то, очевидно, точка касания с другим бедром - АВ - будет делить его в таком же отношении. Далее вводим коэффициент пропорциональности х.
Теперь смотрим на основание. По теореме об окружности, вписанной в угол, мы имеем, что расстояния от вершины угла (в данном случае точки А и С со вписанной окружностью) до точек касания равны. Так, получается, что основание равно 10х.
Складываем все стороны и вычисляем х через известный периметр. Из этого находим все стороны треугольника.
Если все стороны известны, то площадь можно найти по формуле Герона.
Сделаем построение по условию.
Обозначим плоскости α , β.
Прямая m – линия пресечения плоскостей.
По условию т.А принадлежит плоскости β , |AB| ┴ α , |AB|=d
Расстояние от точки А до прямой m отрезок |AC| ┴ m .
Точка В – проекция точки А.
Расстояние от точки B до прямой m отрезок |BC| ┴ m .
По теореме о трех перпендикулярах точки А,В,С лежат в одной плоскости и образуют
прямоугольный треугольник . <ABC =90 Град.
Так как по условию <( α , β) =45 град, следовательно <ACB =45 град.
Значит <BAC =90 - <BCA = 90 -45 =45 град
Треугольник ∆ABC - прямоугольный, равнобедренный. |BC|=|AB|=d
По теореме Пифагора искомое расстояние AC^2 = AB^2 +BC^2 =2d ; AC=d√2
ОТВЕТ d√2
1. Он прямоугольный, т.к. квадрат одной стороны равен сумме квадратов двух других.
2. Т.к. АВС равнобедренный, то, очевидно, точка касания с другим бедром - АВ - будет делить его в таком же отношении. Далее вводим коэффициент пропорциональности х.
Теперь смотрим на основание. По теореме об окружности, вписанной в угол, мы имеем, что расстояния от вершины угла (в данном случае точки А и С со вписанной окружностью) до точек касания равны. Так, получается, что основание равно 10х.
Складываем все стороны и вычисляем х через известный периметр. Из этого находим все стороны треугольника.
Если все стороны известны, то площадь можно найти по формуле Герона.