Точки A1, B1 и C1 параллельны проекциями соответственно точек A, B и C, которые лежат на одной прямой (точка B1 лежит между точками A1 и C1). Найдите отрезок A1C1, если AB = 10 см, AC = 16 см, B1C1 = 3см
АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
У ромба диагонали взаимно перпендикулярны. Его можно рассматривать, как 2 соединённых треугольника вершинами в разные стороны. Тогда линия, соединяющая 2 соседние стороны ромба - это средняя линия треугольника и она параллельна основанию, то есть диагонали. Аналогично, рассматривая второй треугольник, у него тоже средняя линия параллельна основанию и паралленльна первой линии. Теперь можно перейти к другой диагонали и получит аналогичный результат - линии, соединяющие середины ромба, параллельны между собой и диагоналям. То есть, между ними углы по 90 градусов - это и есть доказательство того, что если последовательно соединить середины сторон ромба, то получится прямоугольник.
В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД.
АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14,
86=4АД-14,
АД=25 см.
ВМ - высота на сторону АД.
В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см.
В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см.
ВС=АД-14=25-14=11 см.
Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
Его можно рассматривать, как 2 соединённых треугольника вершинами в разные стороны.
Тогда линия, соединяющая 2 соседние стороны ромба - это средняя линия треугольника и она параллельна основанию, то есть диагонали.
Аналогично, рассматривая второй треугольник, у него тоже средняя линия параллельна основанию и паралленльна первой линии.
Теперь можно перейти к другой диагонали и получит аналогичный результат - линии, соединяющие середины ромба, параллельны между собой и диагоналям.
То есть, между ними углы по 90 градусов - это и есть доказательство того, что если последовательно соединить середины сторон ромба, то получится прямоугольник.